Papers
Topics
Authors
Recent
2000 character limit reached

CHATTER: A Character Attribution Dataset for Narrative Understanding

Published 7 Nov 2024 in cs.CL | (2411.05227v2)

Abstract: Computational narrative understanding studies the identification, description, and interaction of the elements of a narrative: characters, attributes, events, and relations. Narrative research has given considerable attention to defining and classifying character types. However, these character-type taxonomies do not generalize well because they are small, too simple, or specific to a domain. We require robust and reliable benchmarks to test whether narrative models truly understand the nuances of the character's development in the story. Our work addresses this by curating the CHATTER dataset that labels whether a character portrays some attribute for 88124 character-attribute pairs, encompassing 2998 characters, 12967 attributes and 660 movies. We validate a subset of CHATTER, called CHATTEREVAL, using human annotations to serve as a benchmark to evaluate the character attribution task in movie scripts. \evaldataset{} also assesses narrative understanding and the long-context modeling capacity of LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.