Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Hierarchical Molecular Graph Representation in Multimodal LLMs (2411.04708v2)

Published 7 Nov 2024 in cs.LG

Abstract: Following the milestones in LLMs and multimodal models, we have seen a surge in applying LLMs to biochemical tasks. Leveraging graph features and molecular text representations, LLMs can tackle various tasks, such as predicting chemical reaction outcomes and describing molecular properties. However, most current work overlooks the multi-level nature of the graph modality, even though different chemistry tasks may benefit from different feature levels. In this work, we first study the effect of feature granularity and reveal that even reducing all GNN-generated feature tokens to a single one does not significantly impact model performance. We then investigate the effect of various graph feature levels and demonstrate that both the quality of LLM-generated molecules and model performance across different tasks depend on different graph feature levels. Therefore, we conclude with two key insights: (1) current molecular-related multimodal LLMs lack a comprehensive understanding of graph features, and (2) static processing is not sufficient for hierarchical graph feature. We share our findings in detail, with the hope of paving the way for the community to develop more advanced multimodal LLMs for incorporating molecular graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.