Papers
Topics
Authors
Recent
2000 character limit reached

UnityGraph: Unified Learning of Spatio-temporal features for Multi-person Motion Prediction (2411.04151v1)

Published 6 Nov 2024 in cs.CV and cs.AI

Abstract: Multi-person motion prediction is a complex and emerging field with significant real-world applications. Current state-of-the-art methods typically adopt dual-path networks to separately modeling spatial features and temporal features. However, the uncertain compatibility of the two networks brings a challenge for spatio-temporal features fusion and violate the spatio-temporal coherence and coupling of human motions by nature. To address this issue, we propose a novel graph structure, UnityGraph, which treats spatio-temporal features as a whole, enhancing model coherence and coupling.spatio-temporal features as a whole, enhancing model coherence and coupling. Specifically, UnityGraph is a hypervariate graph based network. The flexibility of the hypergraph allows us to consider the observed motions as graph nodes. We then leverage hyperedges to bridge these nodes for exploring spatio-temporal features. This perspective considers spatio-temporal dynamics unitedly and reformulates multi-person motion prediction into a problem on a single graph. Leveraging the dynamic message passing based on this hypergraph, our model dynamically learns from both types of relations to generate targeted messages that reflect the relevance among nodes. Extensive experiments on several datasets demonstrates that our method achieves state-of-the-art performance, confirming its effectiveness and innovative design.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.