Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Energy Score-based Pseudo-Label Filtering and Adaptive Loss for Imbalanced Semi-supervised SAR target recognition (2411.03959v1)

Published 6 Nov 2024 in cs.CV and cs.AI

Abstract: Automatic target recognition (ATR) is an important use case for synthetic aperture radar (SAR) image interpretation. Recent years have seen significant advancements in SAR ATR technology based on semi-supervised learning. However, existing semi-supervised SAR ATR algorithms show low recognition accuracy in the case of class imbalance. This work offers a non-balanced semi-supervised SAR target recognition approach using dynamic energy scores and adaptive loss. First, an energy score-based method is developed to dynamically select unlabeled samples near to the training distribution as pseudo-labels during training, assuring pseudo-label reliability in long-tailed distribution circumstances. Secondly, loss functions suitable for class imbalances are proposed, including adaptive margin perception loss and adaptive hard triplet loss, the former offsets inter-class confusion of classifiers, alleviating the imbalance issue inherent in pseudo-label generation. The latter effectively tackles the model's preference for the majority class by focusing on complex difficult samples during training. Experimental results on extremely imbalanced SAR datasets demonstrate that the proposed method performs well under the dual constraints of scarce labels and data imbalance, effectively overcoming the model bias caused by data imbalance and achieving high-precision target recognition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.