Papers
Topics
Authors
Recent
Search
2000 character limit reached

Estimation of spatial and time scales of collective behaviors of active matters through learning hydrodynamic equations from particle dynamics

Published 6 Nov 2024 in cond-mat.soft | (2411.03783v1)

Abstract: We present a data-driven framework for learning hydrodynamic equations from particle-based simulations of active matter. Our method leverages coarse-graining in both space and time to bridge microscopic particle dynamics with macroscopic continuum models. By employing spectral representations and sparse regression, we efficiently estimate partial differential equations (PDEs) that capture collective behaviors such as flocking and phase separation. This approach, validated using hydrodynamic descriptions of the Vicsek model and Active Brownian particles, demonstrates the potential of data-driven strategies to uncover the universal features of collective dynamics in active matter systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.