Papers
Topics
Authors
Recent
2000 character limit reached

Open-Source High-Speed Flight Surrogate Modeling Framework (2411.03598v1)

Published 6 Nov 2024 in cs.LG

Abstract: High-speed flight vehicles, which travel much faster than the speed of sound, are crucial for national defense and space exploration. However, accurately predicting their behavior under numerous, varied flight conditions is a challenge and often prohibitively expensive. The proposed approach involves creating smarter, more efficient machine learning models (also known as surrogate models or meta models) that can fuse data generated from a variety of fidelity levels -- to include engineering methods, simulation, wind tunnel, and flight test data -- to make more accurate predictions. These models are able to move the bulk of the computation from high performance computing (HPC) to single user machines (laptop, desktop, etc.). The project builds upon previous work but introduces code improvements and an informed perspective on the direction of the field. The new surrogate modeling framework is now modular and, by design, broadly applicable to many modeling problems. The new framework also has a more robust automatic hyperparameter tuning capability and abstracts away most of the pre- and post-processing tasks. The Gaussian process regression and deep neural network-based models included in the presented framework were able to model two datasets with high accuracy (R2>0.99). The primary conclusion is that the framework is effective and has been delivered to the Air Force for integration into real-world projects. For future work, significant and immediate investment in continued research is crucial. The author recommends further testing and refining modeling methods that explicitly incorporate physical laws and are robust enough to handle simulation and test data from varying resolutions and sources, including coarse meshes, fine meshes, unstructured meshes, and limited experimental test points.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.