Papers
Topics
Authors
Recent
2000 character limit reached

LLM-based Continuous Intrusion Detection Framework for Next-Gen Networks (2411.03354v2)

Published 4 Nov 2024 in cs.CR and cs.NI

Abstract: In this paper, we present an adaptive framework designed for the continuous detection, identification and classification of emerging attacks in network traffic. The framework employs a transformer encoder architecture, which captures hidden patterns in a bidirectional manner to differentiate between malicious and legitimate traffic. Initially, the framework focuses on the accurate detection of malicious activities, achieving a perfect recall of 100\% in distinguishing between attack and benign traffic. Subsequently, the system incrementally identifies unknown attack types by leveraging a Gaussian Mixture Model (GMM) to cluster features derived from high-dimensional BERT embeddings. This approach allows the framework to dynamically adjust its identification capabilities as new attack clusters are discovered, maintaining high detection accuracy. Even after integrating additional unknown attack clusters, the framework continues to perform at a high level, achieving 95.6\% in both classification accuracy and recall.The results demonstrate the effectiveness of the proposed framework in adapting to evolving threats while maintaining high accuracy in both detection and identification tasks. Our ultimate goal is to develop a scalable, real-time intrusion detection system that can continuously evolve with the ever-changing network threat landscape.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.