Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks (2411.03343v2)

Published 2 Nov 2024 in cs.CR, cs.AI, and cs.CL

Abstract: Jailbreaks have been a central focus of research regarding the safety and reliability of LLMs, yet the mechanisms underlying these attacks remain poorly understood. While previous studies have predominantly relied on linear methods to detect jailbreak attempts and model refusals, we take a different approach by examining both linear and non-linear features in prompts that lead to successful jailbreaks. First, we introduce a novel dataset comprising 10,800 jailbreak attempts spanning 35 diverse attack methods. Leveraging this dataset, we train probes to classify successful from unsuccessful jailbreaks using the latent representations corresponding to prompt tokens. Notably, we find that even when probes achieve high accuracy in predicting the success of jailbreaks, their performance often fails to generalize to unseen attack methods. This reveals that different jailbreaking strategies exploit different non-linear, non-universal features. Next, we demonstrate that non-linear probes provide a powerful tool for steering model behavior. Specifically, we use these probes to guide targeted latent space perturbations, enabling us to effectively modulate the model's robustness against jailbreaks. Overall, our findings challenge the assumption that jailbreaks can be fully understood through linear or simple universal prompt features alone, highlighting the importance of a nuanced understanding of the mechanisms behind LLM vulnerabilities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.