Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Capturing research literature attitude towards Sustainable Development Goals: an LLM-based topic modeling approach (2411.02943v2)

Published 5 Nov 2024 in cs.CL

Abstract: The world is facing a multitude of challenges that hinder the development of human civilization and the well-being of humanity on the planet. The Sustainable Development Goals (SDGs) were formulated by the United Nations in 2015 to address these global challenges by 2030. Natural language processing techniques can help uncover discussions on SDGs within research literature. We propose a completely automated pipeline to 1) fetch content from the Scopus database and prepare datasets dedicated to five groups of SDGs; 2) perform topic modeling, a statistical technique used to identify topics in large collections of textual data; and 3) enable topic exploration through keywords-based search and topic frequency time series extraction. For topic modeling, we leverage the stack of BERTopic scaled up to be applied on large corpora of textual documents (we find hundreds of topics on hundreds of thousands of documents), introducing i) a novel LLM-based embeddings computation for representing scientific abstracts in the continuous space and ii) a hyperparameter optimizer to efficiently find the best configuration for any new big datasets. We additionally produce the visualization of results on interactive dashboards reporting topics' temporal evolution. Results are made inspectable and explorable, contributing to the interpretability of the topic modeling process. Our proposed LLM-based topic modeling pipeline for big-text datasets allows users to capture insights on the evolution of the attitude toward SDGs within scientific abstracts in the 2006-2023 time span. All the results are reproducible by using our system; the workflow can be generalized to be applied at any point in time to any big corpus of textual documents.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube