Papers
Topics
Authors
Recent
2000 character limit reached

The shift-and-invert Arnoldi method for singular matrix pencils (2411.02895v1)

Published 5 Nov 2024 in math.NA and cs.NA

Abstract: The numerical solution of singular generalized eigenvalue problems is still challenging. In Hochstenbach, Mehl, and Plestenjak, Solving Singular Generalized Eigenvalue Problems by a Rank-Completing Perturbation, SIMAX 2019, a rank-completing perturbation was proposed and a related bordering of the singular pencil. For large sparse pencils, we propose an LU factorization that determines a rank completing perturbation that regularizes the pencil and that is then used in the shift-and-invert Arnoldi method to obtain eigenvalues nearest a shift. Numerical examples illustrate the theory and the algorithms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.