Utilizing a machine-learned potential to explore enhanced radiation tolerance in the MoNbTaVW high-entropy alloy (2411.02834v2)
Abstract: High-entropy alloys (HEAs) based on tungsten (W) have emerged as promising candidates for plasma-facing components in future fusion reactors, owing to their excellent irradiation resistance. In this study, we construct an efficient machine-learned interatomic potential for the MoNbTaVW quinary system. This potential achieves computational speeds comparable to the embedded-atom method (EAM) potential, allowing us to conduct a comprehensive investigation of the primary radiation damage through molecular dynamics simulations. Threshold displacement energies (TDEs) in the MoNbTaVW HEA are investigated and compared with pure metals. A series of displacement cascade simulations at primary knock-on atom energies ranging from 10 to 150 keV reveal significant differences in defect generation and clustering between MoNbTaVW HEA and pure W. In HEAs, we observe more surviving Frenkel pairs (FPs) but fewer and smaller interstitial clusters compared to W, indicating superior radiation tolerance. We propose extended damage models to quantify the radiation dose in the MoNbTaVW HEA, and suggest that one reason for their enhanced resistance is subcascade splitting, which reduces the formation of interstitial clusters. Our findings provide critical insights into the fundamental irradiation resistance mechanisms in refractory body-centered cubic alloys, offering guidance for the design of future radiation-tolerant materials.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.