Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Differentiability and Approximation of Probability Functions under Gaussian Mixture Models: A Bayesian Approach (2411.02721v1)

Published 5 Nov 2024 in math.OC, math.PR, and stat.ML

Abstract: In this work, we study probability functions associated with Gaussian mixture models. Our primary focus is on extending the use of spherical radial decomposition for multivariate Gaussian random vectors to the context of Gaussian mixture models, which are not inherently spherical but only conditionally so. Specifically, the conditional probability distribution, given a random parameter of the random vector, follows a Gaussian distribution, allowing us to apply Bayesian analysis tools to the probability function. This assumption, together with spherical radial decomposition for Gaussian random vectors, enables us to represent the probability function as an integral over the Euclidean sphere. Using this representation, we establish sufficient conditions to ensure the differentiability of the probability function and provide and integral representation of its gradient. Furthermore, leveraging the Bayesian decomposition, we approximate the probability function using random sampling over the parameter space and the Euclidean sphere. Finally, we present numerical examples that illustrate the advantages of this approach over classical approximations based on random vector sampling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.