Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Circular Regression with von Mises Quasi-Processes

Published 19 Jun 2024 in stat.ML, cs.LG, and stat.CO | (2406.13151v3)

Abstract: The need for regression models to predict circular values arises in many scientific fields. In this work we explore a family of expressive and interpretable distributions over circle-valued random functions related to Gaussian processes targeting two Euclidean dimensions conditioned on the unit circle. The probability model has connections with continuous spin models in statistical physics. Moreover, its density is very simple and has maximum-entropy, unlike previous Gaussian process-based approaches, which use wrapping or radial marginalization. For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling. We argue that transductive learning in these models favors a Bayesian approach to the parameters and apply our sampling scheme to the Double Metropolis-Hastings algorithm. We present experiments applying this model to the prediction of (i) wind directions and (ii) the percentage of the running gait cycle as a function of joint angles.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 5 likes about this paper.