Papers
Topics
Authors
Recent
2000 character limit reached

M-CELS: Counterfactual Explanation for Multivariate Time Series Data Guided by Learned Saliency Maps (2411.02649v1)

Published 4 Nov 2024 in cs.LG and cs.AI

Abstract: Over the past decade, multivariate time series classification has received great attention. Machine learning (ML) models for multivariate time series classification have made significant strides and achieved impressive success in a wide range of applications and tasks. The challenge of many state-of-the-art ML models is a lack of transparency and interpretability. In this work, we introduce M-CELS, a counterfactual explanation model designed to enhance interpretability in multidimensional time series classification tasks. Our experimental validation involves comparing M-CELS with leading state-of-the-art baselines, utilizing seven real-world time-series datasets from the UEA repository. The results demonstrate the superior performance of M-CELS in terms of validity, proximity, and sparsity, reinforcing its effectiveness in providing transparent insights into the decisions of machine learning models applied to multivariate time series data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.