Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SK-PINN: Accelerated physics-informed deep learning by smoothing kernel gradients (2411.02411v2)

Published 20 Oct 2024 in physics.comp-ph

Abstract: The automatic differentiation (AD) in the vanilla physics-informed neural networks (PINNs) is the computational bottleneck for the high-efficiency analysis. The concept of derivative discretization in smoothed particle hydrodynamics (SPH) can provide an accelerated training method for PINNs. In this paper, smoothing kernel physics-informed neural networks (SK-PINNs) are established, which solve differential equations using smoothing kernel discretization. It is a robust framework capable of solving problems in the computational mechanics of complex domains. When the number of collocation points gradually increases, the training speed of SK-PINNs significantly surpasses that of vanilla PINNs. In cases involving large collocation point sets or higher-order problems, SK-PINN training can be up to tens of times faster than vanilla PINN. Additionally, analysis using neural tangent kernel (NTK) theory shows that the convergence rates of SK-PINNs are consistent with those of vanilla PINNs. The superior performance of SK-PINNs is demonstrated through various examples, including regular and complex domains, as well as forward and inverse problems in fluid dynamics and solid mechanics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.