Papers
Topics
Authors
Recent
2000 character limit reached

An Empirical Study on the Code Refactoring Capability of Large Language Models

Published 4 Nov 2024 in cs.SE | (2411.02320v1)

Abstract: LLMs have shown potential to enhance software development through automated code generation and refactoring, reducing development time and improving code quality. This study empirically evaluates StarCoder2, an LLM optimized for code generation, in refactoring code across 30 open-source Java projects. We compare StarCoder2's performance against human developers, focusing on (1) code quality improvements, (2) types and effectiveness of refactorings, and (3) enhancements through one-shot and chain-of-thought prompting. Our results indicate that StarCoder2 reduces code smells by 20.1% more than developers, excelling in systematic issues like Long Statement and Magic Number, while developers handle complex, context-dependent issues better. One-shot prompting increases the unit test pass rate by 6.15% and improves code smell reduction by 3.52%. Generating five refactorings per input further increases the pass rate by 28.8%, suggesting that combining one-shot prompting with multiple refactorings optimizes performance. These findings provide insights into StarCoder2's potential and best practices for integrating LLMs into software refactoring, supporting more efficient and effective code improvement in real-world applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.