Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Finite-size scaling and dynamics in a two-dimensional lattice of identical oscillators with frustrated couplings (2411.02171v1)

Published 4 Nov 2024 in cond-mat.dis-nn, cond-mat.stat-mech, and nlin.CD

Abstract: A two-dimensional lattice of oscillators with identical (zero) intrinsic frequencies and Kuramoto type of interactions with randomly frustrated couplings is considered. Starting the time evolution from slightly perturbed synchronized states, we study numerically the relaxation properties, as well as properties at the stable fixed point which can also be viewed as a metastable state of the closely related XY spin glass model. According to our results, the order parameter at the stable fixed point shows generally a slow, reciprocal logarithmic convergence to its limiting value with the system size. The infinite-size limit is found to be close to zero for zero-centered Gaussian couplings, whereas, for a binary $\pm 1$ distribution with a sufficiently high concentration of positive couplings, it is significantly above zero. Besides, the relaxation time is found to grow algebraically with the system size. Thus, the order parameter in an infinite system approaches its limiting value inversely proportionally to $\ln t$ at late times $t$, similarly to that found in the model with all-to-all couplings [Daido, Chaos {\bf 28}, 045102 (2018)]. As opposed to the order parameter, the energy of the corresponding XY model is found to converge algebraically to its infinite-size limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Acebrón, L. Bonilla, C. Vicente, F. Ritort,  and R. Spigler, “The kuramoto model: A simple paradigm for synchronization phenomena,” Reviews of Modern Physics 77, 137–185 (2005).
  2. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno,  and C. Zhou, “Synchronization in complex networks,” Phys. Rep. 469, 93–153 (2008).
  3. G. Deco and V. K. Jirsa, “Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors,” Journal of Neuroscience 32, 3366–3375 (2012), https://www.jneurosci.org/content/32/10/3366.full.pdf .
  4. I. Z. Kiss, Y. Zhai,  and J. L. Hudson, “Emerging coherence in a population of chemical oscillators,” Science 296, 1676–1678 (2002), https://www.science.org/doi/pdf/10.1126/science.1070757 .
  5. Y. Kuramoto, in Proceedings of the International Symposium on Mathematical Problems, edited by H. Araki (Springer, New York, 1984).
  6. H. Hong, H. Chaté, H. Park,  and L.-H. Tang, “Entrainment transition in populations of random frequency oscillators,” Physical Review Letters 99 (2007), 10.1103/PhysRevLett.99.184101.
  7. H. Sakaguchi, S. Shinomoto,  and Y. Kuramoto, “Local and grobal self-entrainments in oscillator lattices,” Progress of Theoretical Physics 77, 1005 (1987).
  8. H. Hong, H. Park,  and M. Choi, “Collective synchronization in spatially extended systems of coupled oscillators with random frequencies,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 72 (2005), 10.1103/PhysRevE.72.036217.
  9. E. Ott and T. M. Antonsen, “Low dimensional behavior of large systems of globally coupled oscillators,” Chaos 18, 037113 (2008).
  10. H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions in localized populations of model neurons.” Biophysical journal 12 1, 1–24 (1972).
  11. D. Hansel and G. Mato, “Asynchronous States and the Emergence of Synchrony in Large Networks of Interacting Excitatory and Inhibitory Neurons,” Neural Computation 15, 1–56 (2003), https://direct.mit.edu/neco/article-pdf/15/1/1/815388/089976603321043685.pdf .
  12. E. Montbrió and D. Pazó, “Kuramoto model for excitation-inhibition-based oscillations,” Phys. Rev. Lett. 120, 244101 (2018).
  13. G. Ódor, G. Deco,  and J. Kelling, “Differences in the critical dynamics underlying the human and fruit-fly connectome,” Phys. Rev. Research 4, 023057 (2022).
  14. H. Daido, “Superslow relaxation in identical phase oscillators with random and frustrated interactions,” Chaos 28, 045102 (2018).
  15. H. Hong and E. A. Martens, “First-order like phase transition induced by quenched coupling disorder,” Chaos 32, 063125 (2022).
  16. A. Cauchy, “Méthode générale pour la résolution des systèmes d’équations simultanées,” Comp. Rend. Acad. Sci. Paris 25, 536 (1847).
  17. J. Vannimenus, S. Kirkpatrick, F. D. M. Haldane,  and C. Jayaprakash, “Ground-state morphology of random frustrated xy systems,” Phys. Rev. B 39, 4634 (1989).
  18. P. Gawiec and D. R. Grempel, “Numerical study of the ground-state properties of a frustrated xy model,” Phys. Rev. B 44, 2613 (1991).
  19. M. Weigel and M. J. P. Gingras, “Zero-temperature phase of the xy spin glass in two dimensions: Genetic embedding matching heuristic,” Phys. Rev. B 77, 104437 (2008).
  20. L. R. Walker and R. E. Walstedt, “Computer model of metallic spin-glasses,” Phys. Rev. B 22, 3816 (1980).
  21. K. Binder and A. P. Young, “Spin glasses: Experimental facts, theoretical concepts, and open questions,” Rev. Mod. Phys. 58, 801 (1986).
  22. D. S. Fisher and D. A. Huse, “Nonequilibrium dynamics of spin glasses,” Phys. Rev. B 38, 373 (1988).
  23. H. Rieger, “Monte carlo studies of ising spin glasses and random field systems,” Annual Reviews of Computational Physics II , 295 (1995).
  24. J. Kisker, L. Santen, M. Schreckenberg,  and H. Rieger, “Off-equilibrium dynamics in finite-dimensional spin glass models,” Phys. Rev. B 53, 6418 (1996).
  25. H. Daido, “Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions,” Phys. Rev. Lett. 68, 1073 (1992).
  26. J. C. Stiller and G. Radons, “Dynamics of nonlinear oscillators with random interactions,” Phys. Rev. E 58, 1789 (1998).
  27. H. Daido, “Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators,” Phys. Rev. E 61, 2145 (2000).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: