The Certainty Ratio $C_ρ$: a novel metric for assessing the reliability of classifier predictions (2411.01973v2)
Abstract: Evaluating the performance of classifiers is critical in machine learning, particularly in high-stakes applications where the reliability of predictions can significantly impact decision-making. Traditional performance measures, such as accuracy and F-score, often fail to account for the uncertainty inherent in classifier predictions, leading to potentially misleading assessments. This paper introduces the Certainty Ratio ($C_\rho$), a novel metric designed to quantify the contribution of confident (certain) versus uncertain predictions to any classification performance measure. By integrating the Probabilistic Confusion Matrix ($CM\star$) and decomposing predictions into certainty and uncertainty components, $C_\rho$ provides a more comprehensive evaluation of classifier reliability. Experimental results across 21 datasets and multiple classifiers, including Decision Trees, Naive-Bayes, 3-Nearest Neighbors, and Random Forests, demonstrate that $C_\rho$ reveals critical insights that conventional metrics often overlook. These findings emphasize the importance of incorporating probabilistic information into classifier evaluation, offering a robust tool for researchers and practitioners seeking to improve model trustworthiness in complex environments.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.