Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enhancing Forecasts Using Real-Time Data Flow and Hierarchical Forecast Reconciliation, with Applications to the Energy Sector (2411.01528v1)

Published 3 Nov 2024 in stat.ME

Abstract: A novel framework for hierarchical forecast updating is presented, addressing a critical gap in the forecasting literature. By assuming a temporal hierarchy structure, the innovative approach extends hierarchical forecast reconciliation to effectively manage the challenge posed by partially observed data. This crucial extension allows, in conjunction with real-time data, to obtain updated and coherent forecasts across the entire temporal hierarchy, thereby enhancing decision-making accuracy. The framework involves updating base models in response to new data, which produces revised base forecasts. A subsequent pruning step integrates the newly available data, allowing for the application of any forecast reconciliation method to obtain fully updated reconciled forecasts. Additionally, the framework not only ensures coherence among forecasts but also improves overall accuracy throughout the hierarchy. Its inherent flexibility and interpretability enable users to perform hierarchical forecast updating concisely. The methodology is extensively demonstrated in a simulation study with various settings and comparing different data-generating processes, hierarchies, and reconciliation methods. Practical applicability is illustrated through two case studies in the energy sector, energy generation and solar power data, where the framework yields superior results compared to base models that do not incorporate new data, leading to more precise decision-making outcomes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.