Papers
Topics
Authors
Recent
2000 character limit reached

PMI-DT: Leveraging Digital Twins and Machine Learning for Predictive Modeling and Inspection in Manufacturing (2411.01299v1)

Published 2 Nov 2024 in cs.CE

Abstract: Over the years, Digital Twin (DT) has become popular in Advanced Manufacturing (AM) due to its ability to improve production efficiency and quality. By creating virtual replicas of physical assets, DTs help in real-time monitoring, develop predictive models, and improve operational performance. However, integrating data from physical systems into reliable predictive models, particularly in precision measurement and failure prevention, is often challenging and less explored. This study introduces a Predictive Maintenance and Inspection Digital Twin (PMI-DT) framework with a focus on precision measurement and predictive quality assurance using 3D-printed 1''-4 ACME bolt, CyberGage 360 vision inspection system, SolidWorks, and Microsoft Azure. During this approach, dimensional inspection data is combined with fatigue test results to create a model for detecting failures. Using Machine Learning (ML) -- Random Forest and Decision Tree models -- the proposed approaches were able to predict bolt failure with real-time data 100% accurately. Our preliminary result shows Max Position (30%) and Max Load (24%) are the main factors that contribute to that failure. We expect the PMI-DT framework will reduce inspection time and improve predictive maintenance, ultimately giving manufacturers a practical way to boost product quality and reliability using DT in AM.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.