Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classical versus quantum queries in quantum PCPs with classical proofs (2411.00946v1)

Published 1 Nov 2024 in quant-ph and cs.CC

Abstract: We generalize quantum-classical PCPs, first introduced by Weggemans, Folkertsma and Cade (TQC 2024), to allow for $q$ quantum queries to a polynomially-sized classical proof ($\mathsf{QCPCP}{Q,c,s}[q]$). Exploiting a connection with the polynomial method, we prove that for any constant $q$, promise gap $c-s = \Omega(1/\text{poly}(n))$ and $\delta>0$, we have $\mathsf{QCPCP}{Q,c,s}[q] \subseteq \mathsf{QCPCP}_{1-\delta,1/2+\delta}[3] \subseteq \mathsf{BQ} \cdot \mathsf{NP}$, where $\mathsf{BQ} \cdot \mathsf{NP}$ is the class of promise problems with quantum reductions to an $\mathsf{NP}$-complete problem. Surprisingly, this shows that we can amplify the promise gap from inverse polynomial to constant for constant query quantum-classical PCPs, and that any quantum-classical PCP making any constant number of quantum queries can be simulated by one that makes only three classical queries. Nevertheless, even though we can achieve promise gap amplification, our result also gives strong evidence that there exists no constant query quantum-classical PCP for $\mathsf{QCMA}$, as it is unlikely that $\mathsf{QCMA} \subseteq \mathsf{BQ} \cdot \mathsf{NP}$, which we support by giving oracular evidence. In the (poly-)logarithmic query regime, we show for any positive integer $c$, there exists an oracle relative to which $\mathsf{QCPCP}[\mathcal{O}(\logc n)] \subsetneq \mathsf{QCPCP}_Q[\mathcal{O}(\logc n)]$, contrasting the constant query case where the equivalence of both query models holds relative to any oracle. Finally, we connect our results to more general quantum-classical interactive proof systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.