Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Personality Analysis from Online Short Video Platforms with Multi-domain Adaptation (2411.00813v1)

Published 26 Oct 2024 in cs.MM, cs.AI, cs.CL, cs.CV, cs.CY, cs.LG, cs.SI, and eess.AS

Abstract: Personality analysis from online short videos has gained prominence due to its applications in personalized recommendation systems, sentiment analysis, and human-computer interaction. Traditional assessment methods, such as questionnaires based on the Big Five Personality Framework, are limited by self-report biases and are impractical for large-scale or real-time analysis. Leveraging the rich, multi-modal data present in short videos offers a promising alternative for more accurate personality inference. However, integrating these diverse and asynchronous modalities poses significant challenges, particularly in aligning time-varying data and ensuring models generalize well to new domains with limited labeled data. In this paper, we propose a novel multi-modal personality analysis framework that addresses these challenges by synchronizing and integrating features from multiple modalities and enhancing model generalization through domain adaptation. We introduce a timestamp-based modality alignment mechanism that synchronizes data based on spoken word timestamps, ensuring accurate correspondence across modalities and facilitating effective feature integration. To capture temporal dependencies and inter-modal interactions, we employ Bidirectional Long Short-Term Memory networks and self-attention mechanisms, allowing the model to focus on the most informative features for personality prediction. Furthermore, we develop a gradient-based domain adaptation method that transfers knowledge from multiple source domains to improve performance in target domains with scarce labeled data. Extensive experiments on real-world datasets demonstrate that our framework significantly outperforms existing methods in personality prediction tasks, highlighting its effectiveness in capturing complex behavioral cues and robustness in adapting to new domains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. H. Ning, S. Dhelim, and N. Aung, “Personet: Friend recommendation system based on big-five personality traits and hybrid filtering,” IEEE Transactions on Computational Social Systems, vol. 6, no. 3, pp. 394–402, 2019.
  2. Q. Yang, S. Nikolenko, A. Huang, and A. Farseev, “Personality-driven social multimedia content recommendation,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 7290–7299.
  3. R. Zhang, B. Liu, J. Cao, Y. Zhao, Hantao Liu, and X. Sun, “Modeling group-level public sentiment in social networks through topic and role enhancement,” Knowledge-Based Systems, p. 112594, 2024.
  4. B. Liu, S. Tang, X. Sun, Q. Chen, J. Cao, J. Luo, and S. Zhao, “Context-aware social media user sentiment analysis,” Tsinghua Science and Technology, vol. 25, no. 4, pp. 528–541, 2020.
  5. C. Segalin, F. Celli, L. Polonio, M. Kosinski, D. Stillwell, N. Sebe, M. Cristani, and B. Lepri, “What your facebook profile picture reveals about your personality,” in Proceedings of the 25th ACM international conference on Multimedia, 2017, pp. 460–468.
  6. L. Liu, D. Preotiuc-Pietro, Z. R. Samani, M. E. Moghaddam, and L. Ungar, “Analyzing personality through social media profile picture choice,” in Proceedings of the International AAAI Conference on Web and Social Media, vol. 10, no. 1, 2016, pp. 211–220.
  7. F. Celli, E. Bruni, and B. Lepri, “Automatic personality and interaction style recognition from facebook profile pictures,” in Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 1101–1104.
  8. X. Sun, B. Liu, L. Ai, D. Liu, Q. Meng, and J. Cao, “In your eyes: Modality disentangling for personality analysis in short video,” IEEE Transactions on Computational Social Systems, 2022.
  9. C.-L. Zhang, H. Zhang, X.-S. Wei, and J. Wu, “Deep bimodal regression for apparent personality analysis,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14.   Springer, 2016, pp. 311–324.
  10. X.-S. Wei, C.-L. Zhang, H. Zhang, and J. Wu, “Deep bimodal regression of apparent personality traits from short video sequences,” IEEE Transactions on Affective Computing, vol. 9, no. 3, pp. 303–315, 2017.
  11. C. Sarkar, S. Bhatia, A. Agarwal, and J. Li, “Feature analysis for computational personality recognition using youtube personality data set,” in Proceedings of the 2014 ACM multi media on workshop on computational personality recognition, 2014, pp. 11–14.
  12. R. Schoedel, Q. Au, S. T. Völkel, F. Lehmann, D. Becker, M. Bühner, B. Bischl, H. Hussmann, and C. Stachl, “Digital footprints of sensation seeking,” Zeitschrift für Psychologie, 2019.
  13. R. Rastogi, D. Chaturvedi, S. Satya, N. Arora, P. Trivedi, A. K. Singh, A. K. Sharma, and A. Singh, “Intelligent personality analysis on indicators in iot-mmbd-enabled environment,” Multimedia Big Data Computing for IoT Applications: Concepts, Paradigms and Solutions, pp. 185–215, 2020.
  14. J. Philip, D. Shah, S. Nayak, S. Patel, and Y. Devashrayee, “Machine learning for personality analysis based on big five model,” in Data Management, Analytics and Innovation: Proceedings of ICDMAI 2018, Volume 2.   Springer, 2019, pp. 345–355.
  15. K. A. Nisha, U. Kulsum, S. Rahman, M. F. Hossain, P. Chakraborty, and T. Choudhury, “A comparative analysis of machine learning approaches in personality prediction using mbti,” in Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2021.   Springer, 2022, pp. 13–23.
  16. X. Sun, B. Liu, Q. Meng, J. Cao, J. Luo, and H. Yin, “Group-level personality detection based on text generated networks,” World Wide Web, vol. 23, pp. 1887–1906, 2020.
  17. I. Maliki and M. Sidik, “Personality prediction system based on signatures using machine learning,” in IOP Conference Series: Materials Science and Engineering, vol. 879, no. 1.   IOP Publishing, 2020, p. 012068.
  18. S. Sajeevan and W. U. Wickramaarachchi, “Detection of personality traits through handwriting analysis using machine learning approach,” in Advances on Smart and Soft Computing: Proceedings of ICACIn 2021.   Springer, 2021, pp. 79–89.
  19. M. D. Kamalesh and B. Bharathi, “Personality prediction model for social media using machine learning technique,” Computers and Electrical Engineering, vol. 100, p. 107852, 2022.
  20. G. Sudha, K. Sasipriya, D. Nivethitha, S. Saranya et al., “Personality prediction through cv analysis using machine learning algorithms for automated e-recruitment process,” in 2021 4th international conference on computing and communications technologies (ICCCT).   IEEE, 2021, pp. 617–622.
  21. S. Escalera, X. Baró, I. Guyon, and H. J. Escalante, “Guest editorial: apparent personality analysis,” IEEE Transactions on Affective Computing, vol. 9, no. 3, pp. 299–302, 2018.
  22. Z. Wen, J. Cao, Y. Yang, H. Wang, R. Yang, and S. Liu, “Desprompt: Personality-descriptive prompt tuning for few-shot personality recognition,” Information Processing & Management, vol. 60, no. 5, p. 103422, 2023.
  23. L. Kürzinger, D. Winkelbauer, L. Li, T. Watzel, and G. Rigoll, “Ctc-segmentation of large corpora for german end-to-end speech recognition,” in International Conference on Speech and Computer.   Springer, 2020, pp. 267–278.
  24. A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-supervised learning of speech representations,” Advances in neural information processing systems, vol. 33, pp. 12 449–12 460, 2020.
  25. G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all you need for video understanding?” in ICML, vol. 2, no. 3, 2021, p. 4.
  26. S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda, T. Yoshioka, X. Xiao et al., “Wavlm: Large-scale self-supervised pre-training for full stack speech processing,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1505–1518, 2022.
  27. V. Ponce-López, B. Chen, M. Oliu, C. Corneanu, A. Clapés, I. Guyon, X. Baró, H. J. Escalante, and S. Escalera, “Chalearn lap 2016: First round challenge on first impressions-dataset and results,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14.   Springer, 2016, pp. 400–418.
  28. J. Gorbova, E. Avots, I. Lüsi, M. Fishel, S. Escalera, and G. Anbarjafari, “Integrating vision and language for first-impression personality analysis,” IEEE MultiMedia, vol. 25, no. 2, pp. 24–33, 2018.
  29. Y. Güçlütürk, U. Güçlü, M. A. van Gerven, and R. van Lier, “Deep impression: Audiovisual deep residual networks for multimodal apparent personality trait recognition,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14.   Springer, 2016, pp. 349–358.
  30. A. Subramaniam, V. Patel, A. Mishra, P. Balasubramanian, and A. Mittal, “Bi-modal first impressions recognition using temporally ordered deep audio and stochastic visual features,” in Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14.   Springer, 2016, pp. 337–348.
  31. X. Sun, B. Liu, J. Cao, J. Luo, and X. Shen, “Who am i? personality detection based on deep learning for texts,” in 2018 IEEE international conference on communications (ICC).   IEEE, 2018, pp. 1–6.
  32. Z. Shu, X. Sun, and H. Cheng, “When llm meets hypergraph: A sociological analysis on personality via online social networks,” in Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 2087–2096.
  33. X. Sun, H. Cheng, J. Li, B. Liu, and J. Guan, “All in one: Multi-task prompting for graph neural networks,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 2120–2131.
  34. X. Sun, H. Cheng, B. Liu, J. Li, H. Chen, G. Xu, and H. Yin, “Self-supervised hypergraph representation learning for sociological analysis,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 11, pp. 11 860–11 871, 2023.
  35. Z. Cui, X. Sun, L. Pan, S. Liu, and G. Xu, “Event-based incremental recommendation via factors mixed hawkes process,” Information Sciences, vol. 639, p. 119007, 2023.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.