Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Modern, Efficient, and Differentiable Transport Equation Models using JAX: Applications to Population Balance Equations (2411.00742v1)

Published 1 Nov 2024 in cs.CE and cs.LG

Abstract: Population balance equation (PBE) models have potential to automate many engineering processes with far-reaching implications. In the pharmaceutical sector, crystallization model-based design can contribute to shortening excessive drug development timelines. Even so, two major barriers, typical of most transport equations, not just PBEs, have limited this potential. Notably, the time taken to compute a solution to these models with representative accuracy is frequently limiting. Likewise, the model construction process is often tedious and wastes valuable time, owing to the reliance on human expertise to guess constituent models from empirical data. Hybrid models promise to overcome both barriers through tight integration of neural networks with physical PBE models. Towards eliminating experimental guesswork, hybrid models facilitate determining physical relationships from data, also known as 'discovering physics'. Here, we aim to prepare for planned Scientific Machine Learning (SciML) integration through a contemporary implementation of an existing PBE algorithm, one with computational efficiency and differentiability at the forefront. To accomplish this, we utilized JAX, a cutting-edge library for accelerated computing. We showcase the speed benefits of this modern take on PBE modelling by benchmarking our solver to others we prepared using older, more widespread software. Primarily among these software tools is the ubiquitous NumPy, where we show JAX achieves up to 300x relative acceleration in PBE simulations. Our solver is also fully differentiable, which we demonstrate is the only feasible option for integrating learnable data-driven models at scale. We show that differentiability can be 40x faster for optimizing larger models than conventional approaches, which represents the key to neural network integration for physics discovery in later work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube