Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PrefRAG: Preference-Driven Multi-Source Retrieval Augmented Generation (2411.00689v2)

Published 1 Nov 2024 in cs.CL

Abstract: Retrieval-Augmented Generation (RAG) has emerged as a reliable external knowledge augmentation technique to mitigate hallucination issues and parameterized knowledge limitations in LLMs. Existing adaptive RAG (ARAG) systems excel at in-depth exploration within a single source but struggle to effectively and controllably explore different retrieval sources, as they fail to foresee their internal knowledge features. We develop a novel multi-source ARAG system, PrefRAG, which enhances RAG by enabling in-depth and controllable exploration of diverse retrieval sources through preference-driven adaptive retrieval and self-reflection. PrefRAG first fully explores controllable local sources in adaptive retrieval and supplements with the web when appropriate, ultimately selecting the optimal source for knowledge observation. Subsequently, PrefRAG feeds answer quality feedback into the retrieval process, optimizing it from the generation perspective to produce higher-quality responses. Extensive experiments confirm its superiority, high retrieval efficiency, and knowledge controllability. PrefRAG outperforms Vanilla RAG and the leading MS-ARAG by up to 25.6% and 13.9% respectively. Additionally, PrefRAG trained with DPO achieves higher performance. The code and data are available at https://github.com/QingFei1/PrefRAG.git.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T. Chua, “Retrieving and reading: A comprehensive survey on open-domain question answering,” CoRR, vol. abs/2101.00774, 2021. [Online]. Available: https://arxiv.org/abs/2101.00774
  2. OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.08774
  3. A. Zeng, B. Xu, B. Wang, C. Zhang, D. Yin, D. Rojas, G. Feng, H. Zhao, H. Lai, H. Yu, H. Wang, J. Sun, J. Zhang, J. Cheng, J. Gui, J. Tang, J. Zhang, J. Li, L. Zhao, L. Wu, L. Zhong, M. Liu, M. Huang, P. Zhang, Q. Zheng, R. Lu, S. Duan, S. Zhang, S. Cao, S. Yang, W. L. Tam, W. Zhao, X. Liu, X. Xia, X. Zhang, X. Gu, X. Lv, X. Liu, X. Liu, X. Yang, X. Song, X. Zhang, Y. An, Y. Xu, Y. Niu, Y. Yang, Y. Li, Y. Bai, Y. Dong, Z. Qi, Z. Wang, Z. Yang, Z. Du, Z. Hou, and Z. Wang, “Chatglm: A family of large language models from GLM-130B to GLM-4 all tools,” CoRR, vol. abs/2406.12793, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2406.12793
  4. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient foundation language models,” CoRR, vol. abs/2302.13971, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.13971
  5. Y. Chen, Q. Fu, Y. Yuan, Z. Wen, G. Fan, D. Liu, D. Zhang, Z. Li, and Y. Xiao, “Hallucination detection: Robustly discerning reliable answers in large language models,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, I. Frommholz, F. Hopfgartner, M. Lee, M. Oakes, M. Lalmas, M. Zhang, and R. L. T. Santos, Eds.   ACM, 2023, pp. 245–255. [Online]. Available: https://doi.org/10.1145/3583780.3614905
  6. N. Kandpal, H. Deng, A. Roberts, E. Wallace, and C. Raffel, “Large language models struggle to learn long-tail knowledge,” in International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.   PMLR, 2023, pp. 15 696–15 707. [Online]. Available: https://proceedings.mlr.press/v202/kandpal23a.html
  7. P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented generation for knowledge-intensive NLP tasks,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
  8. K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “Retrieval augmented language model pre-training,” in Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning Research, vol. 119.   PMLR, 2020, pp. 3929–3938. [Online]. Available: http://proceedings.mlr.press/v119/guu20a.html
  9. D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-domain questions,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, R. Barzilay and M. Kan, Eds.   Association for Computational Linguistics, 2017, pp. 1870–1879. [Online]. Available: https://doi.org/10.18653/v1/P17-1171
  10. R. Das, S. Dhuliawala, M. Zaheer, and A. McCallum, “Multi-step retriever-reader interaction for scalable open-domain question answering,” in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.   OpenReview.net, 2019. [Online]. Available: https://openreview.net/forum?id=HkfPSh05K7
  11. Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-hop question answering,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds.   Association for Computational Linguistics, 2018, pp. 2369–2380. [Online]. Available: https://doi.org/10.18653/v1/d18-1259
  12. A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-rag: Learning to retrieve, generate, and critique through self-reflection,” in The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.   OpenReview.net, 2024. [Online]. Available: https://openreview.net/forum?id=hSyW5go0v8
  13. Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang, J. Callan, and G. Neubig, “Active retrieval augmented generation,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 7969–7992. [Online]. Available: https://doi.org/10.18653/v1/2023.emnlp-main.495
  14. H. Wang, B. Xue, B. Zhou, T. Zhang, C. Wang, G. Chen, H. Wang, and K. Wong, “Self-dc: When to retrieve and when to generate? self divide-and-conquer for compositional unknown questions,” CoRR, vol. abs/2402.13514, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2402.13514
  15. Y. Liu, X. Peng, X. Zhang, W. Liu, J. Yin, J. Cao, and T. Du, “RA-ISF: learning to answer and understand from retrieval augmentation via iterative self-feedback,” in Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, L. Ku, A. Martins, and V. Srikumar, Eds.   Association for Computational Linguistics, 2024, pp. 4730–4749. [Online]. Available: https://aclanthology.org/2024.findings-acl.281
  16. S. Yan, J. Gu, Y. Zhu, and Z. Ling, “Corrective retrieval augmented generation,” CoRR, vol. abs/2401.15884, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.15884
  17. S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao, “React: Synergizing reasoning and acting in language models,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/forum?id=WE_vluYUL-X
  18. M. Gusenbauer and N. R. Haddaway, “Which academic search systems are suitable for systematic reviews or meta-analyses? evaluating retrieval qualities of google scholar, pubmed, and 26 other resources,” Research synthesis methods, vol. 11, no. 2, pp. 181–217, 2020.
  19. N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang, “Lost in the middle: How language models use long contexts,” Trans. Assoc. Comput. Linguistics, vol. 12, pp. 157–173, 2024. [Online]. Available: https://doi.org/10.1162/tacl_a_00638
  20. K. Zhou, D. Jurafsky, and T. Hashimoto, “Navigating the grey area: How expressions of uncertainty and overconfidence affect language models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, H. Bouamor, J. Pino, and K. Bali, Eds.   Association for Computational Linguistics, 2023, pp. 5506–5524. [Online]. Available: https://doi.org/10.18653/v1/2023.emnlp-main.335
  21. X. Ho, A. D. Nguyen, S. Sugawara, and A. Aizawa, “Constructing A multi-hop QA dataset for comprehensive evaluation of reasoning steps,” in Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, D. Scott, N. Bel, and C. Zong, Eds.   International Committee on Computational Linguistics, 2020, pp. 6609–6625. [Online]. Available: https://doi.org/10.18653/v1/2020.coling-main.580
  22. H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Musique: Multihop questions via single-hop question composition,” Trans. Assoc. Comput. Linguistics, vol. 10, pp. 539–554, 2022. [Online]. Available: https://doi.org/10.1162/tacl_a_00475
  23. Harsh Trivedi and Niranjan Balasubramanian and Tushar Khot and Ashish Sabharwal, “Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 10 014–10 037. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.557
Citations (2)

Summary

  • The paper presents MSPR, a novel multi-source RAG framework that dynamically integrates reasoning with preference-driven retrieval to optimize information sourcing.
  • It introduces an adaptive reasoning and retrieval agent along with a Preference-Driven Retrieval Strategy Selector, effectively choosing high-quality sources for multi-hop tasks.
  • Experimental evaluations demonstrate up to 14.4% performance gains over standard methods, highlighting significant improvements in retrieval robustness and answer precision.

Towards Multi-Source Retrieval-Augmented Generation via Synergizing Reasoning and Preference-Driven Retrieval

The paper authored by Zhao et al. addresses the challenges associated with Retrieval-Augmented Generation (RAG) systems, particularly focusing on the limitations of existing Adaptive RAG (ARAG) frameworks in effectively utilizing multiple retrieval sources. Their contribution, titled MSPR, aims to enhance RAG frameworks by synergizing reasoning and preference-driven retrieval, thereby advancing the process of deciding "when and what to retrieve" and "which retrieval source to use."

Core Contributions

  1. Multi-Source ARAG Framework: MSPR represents a significant evolution from traditional RAG systems. While Vanilla RAG systems typically implement a one-time retrieval mechanism with a narrow scope, MSPR intelligently integrates multiple sources by dynamically selecting and utilizing them based on the needs of the task. This approach marks a pivotal advance as it ensures more comprehensive information retrieval and integration into LLMs.
  2. Adaptive Reasoning and Retrieval: The paper introduces an adaptive reasoning-and-retrieval agent within MSPR. This agent drives dynamic adjustments of retrieval actions, featuring an iterative process that includes reasoning, action decision-making, and knowledge feedback observation. This process ensures that retrieval actions become more contextually aware and aligned with the question's requirements, enhancing the robustness of the retrieval phase.
  3. Preference-Driven Retrieval Strategy Selector (PRS): A novel component of the framework, PRS, guides the agent in navigating the retrieval space. It prioritizes leveraging high-quality primary sources and supplements them with secondary sources based on strategic necessity. This component is crucial for avoiding common pitfalls associated with arbitrary and non-optimal source selection.
  4. Corrective Answer Reviewer (CAR): To address issues of output quality, MSPR employs CAR, a feedback mechanism that evaluates generated answers. This mechanism instructs the system to initiate supplementary retrieval actions when necessary, refining the final output's accuracy and completeness.

Experimental Evaluation

Extensive experimental evaluation on three complex datasets — HotpotQA, 2WikiMultiHopQA, and MuSiQue — underscores MSPR's superior performance. The framework outperformed notable baselines, including standard Vanilla RAG systems, existing ARAG methods like Self-RAG and FLARE, and multi-source approaches such as CRAG and ReAct, achieving up to 14.4% improvement on certain metrics. The ablation studies further highlight the critical role of PRS and CAR in enhancing the framework's efficacy.

Practical and Theoretical Implications

Practically, MSPR's dynamic retrieval framework offers significant improvements in tasks requiring comprehensive knowledge integration, such as multi-hop question answering, where a deep reasoning chain is essential. Theoretically, the paper advances our understanding of multi-source integration in LLMs, providing a robust foundation for future research into adaptive retrieval systems.

Future Directions

Future research could explore further optimization of retrieval source selection criteria, potentially integrating machine learning models to predict source utility in real-time. Moreover, extending MSPR's capabilities to a broader range of tasks, including conversational agents and complex decision-making systems, could prove beneficial. Investigating the scalability of MSPR with ever-increasing external knowledge bases would also be a critical trajectory for future inquiry.

In summary, Zhao et al.'s MSPR framework provides a compelling and technically sound advancement for retrieval-augmented LLMs, emphasizing the importance of adaptive and multi-source retrieval strategies. The framework offers a well-founded basis for ongoing research aiming to mitigate hallucination issues in LLMs and foster the development of more accurate and reliable AI systems.

X Twitter Logo Streamline Icon: https://streamlinehq.com