Chasing shadows with Gottesman-Kitaev-Preskill codes (2411.00235v2)
Abstract: In this work, we consider the task of performing shadow tomography of a logical subsystem defined via the Gottesman-Kitaev-Preskill (GKP) error correcting code. We construct a logical shadow tomography protocol via twirling of continuous variable POVMs by displacement operators and Gaussian unitaries. In the special case of heterodyne measurement, the shadow tomography protocol yields a probabilistic decomposition of any input state into Gaussian states that simulate the encoded logical information of the input relative to a fixed GKP code and we prove bounds on the Gaussian compressibility of states in this setting. For photon parity measurements, logical GKP shadow tomography is equivalent to a Wigner sampling protocol for which we develop the appropriate sampling schemes and finally we derive a Wigner sampling scheme via random GKP codes. This protocol establishes how Wigner samples of any input state relative to a random GKP codes can be used to estimate any sufficiently bounded observable on CV space. This construction shows how a description of the physical state of the system can be reconstructed from encoded logical information relative to a random code and further highlights the power of performing idealized GKP error correction as a tomographic resource.
- S. Aaronson, “Shadow tomography of quantum states,” (2018), arXiv:1711.01053 .
- D. E. Koh and S. Grewal, Quantum 6, 776 (2022).
- J. T. Iosue, K. Sharma, M. J. Gullans, and V. V. Albert, “Continuous-variable quantum state designs: theory and applications,” (2022), arXiv:2211.05127 .
- S. Gandhari, V. V. Albert, T. Gerrits, J. M. Taylor, and M. J. Gullans, “Continuous-variable shadow tomography,” (2022), arXiv:2211.05149 .
- The Weyl relations are actually a way of rigorously capturing the canonical commutation relations without having to resort to unbounded operators.
- J. Eisert and M. B. Plenio, Int. J. Quant. Inf. 1, 479 (2003).
- J. Conrad, A. G. Burchards, and S. T. Flammia, “Lattices, gates, and curves: GKP codes as a Rosetta stone,” (2024a), arXiv:2407.03270 .
- A. G. Burchards, S. T. Flammia, and J. Conrad, “Fiber bundle fault tolerance of GKP codes,” (2024), arXiv:2410.07332 .
- J. Conrad, Phys. Rev. A 103, 022404 (2021).
- R. F. Werner, Phys. Rev. A 40, 4277 (1989).
- S. Flammia, “scirate.com/arxiv/quant-ph/0611002”, see comment section.
- E. Onorati, J. Kitzinger, J. Helsen, M. Ioannou, A. H. Werner, I. Roth, and J. Eisert, “Noise-mitigated randomized measurements and self-calibrating shadow estimation,” (2024), arXiv:2403.04751 [quant-ph] .
- Except perhaps for error mitigation methods where tunable noise is desired as in zero-noise extrapolation [50, 51].
- S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
- P. P. Varjú, Doc. Math. 18, 1137 (2012).
- P. Diaconis and M. Shahshahani, J. Appl. Prob. 31, 49 (1994).
- K. Banaszek and K. Wódkiewicz, Phys. Rev. Lett. 76, 4344 (1996).
- Hence, this is not necessarily finite dimensional.
- P. Sarnak and P. Buser, Inv. Math. 117, 27 (1994).
- D. Kelmer and S. Yu, Int. Math. Res. Not. 2021, 5825–5859 (2019).
- F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, and S. F. E. Oliviero, “Learning quantum states of continuous variable systems,” (2024), arXiv:2405.01431 .
- N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).
- D. Lachance-Quirion, M.-A. Lemonde, J. O. Simoneau, L. St-Jean, P. Lemieux, S. Turcotte, W. Wright, A. Lacroix, J. Fréchette-Viens, R. Shillito, F. Hopfmueller, M. Tremblay, N. E. Frattini, J. C. Lemyre, and P. St-Jean, “Autonomous quantum error correction of Gottesman-Kitaev-Preskill states,” (2023), arXiv:2310.11400 .
- Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).
- S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
- F. M. Dopico and C. R. Johnson, SIAM J. Matrix Ana. Appl. 31, 650 (2009).
- M. Mosca, A. Tapp, and R. de Wolf, “Private quantum channels and the cost of randomizing quantum information,” (2000), arXiv:quant-ph/0003101 .
- A. M. Childs, Quant. Inf. Comp. 5, 456 (2005).
- E. H. Lieb, Comm. Math. Phys. 31, 327–340 (1973).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.