Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Chasing shadows with Gottesman-Kitaev-Preskill codes (2411.00235v2)

Published 31 Oct 2024 in quant-ph

Abstract: In this work, we consider the task of performing shadow tomography of a logical subsystem defined via the Gottesman-Kitaev-Preskill (GKP) error correcting code. We construct a logical shadow tomography protocol via twirling of continuous variable POVMs by displacement operators and Gaussian unitaries. In the special case of heterodyne measurement, the shadow tomography protocol yields a probabilistic decomposition of any input state into Gaussian states that simulate the encoded logical information of the input relative to a fixed GKP code and we prove bounds on the Gaussian compressibility of states in this setting. For photon parity measurements, logical GKP shadow tomography is equivalent to a Wigner sampling protocol for which we develop the appropriate sampling schemes and finally we derive a Wigner sampling scheme via random GKP codes. This protocol establishes how Wigner samples of any input state relative to a random GKP codes can be used to estimate any sufficiently bounded observable on CV space. This construction shows how a description of the physical state of the system can be reconstructed from encoded logical information relative to a random code and further highlights the power of performing idealized GKP error correction as a tomographic resource.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Aaronson, “Shadow tomography of quantum states,”  (2018), arXiv:1711.01053 .
  2. D. E. Koh and S. Grewal, Quantum 6, 776 (2022).
  3. J. T. Iosue, K. Sharma, M. J. Gullans,  and V. V. Albert, “Continuous-variable quantum state designs: theory and applications,”  (2022), arXiv:2211.05127 .
  4. S. Gandhari, V. V. Albert, T. Gerrits, J. M. Taylor,  and M. J. Gullans, “Continuous-variable shadow tomography,”  (2022), arXiv:2211.05149 .
  5. The Weyl relations are actually a way of rigorously capturing the canonical commutation relations without having to resort to unbounded operators.
  6. J. Eisert and M. B. Plenio, Int. J. Quant. Inf. 1, 479 (2003).
  7. J. Conrad, A. G. Burchards,  and S. T. Flammia, “Lattices, gates, and curves: GKP codes as a Rosetta stone,”  (2024a), arXiv:2407.03270 .
  8. A. G. Burchards, S. T. Flammia,  and J. Conrad, “Fiber bundle fault tolerance of GKP codes,”  (2024), arXiv:2410.07332 .
  9. J. Conrad, Phys. Rev. A 103, 022404 (2021).
  10. R. F. Werner, Phys. Rev. A 40, 4277 (1989).
  11. S. Flammia, “scirate.com/arxiv/quant-ph/0611002”, see comment section.
  12. E. Onorati, J. Kitzinger, J. Helsen, M. Ioannou, A. H. Werner, I. Roth,  and J. Eisert, “Noise-mitigated randomized measurements and self-calibrating shadow estimation,”  (2024), arXiv:2403.04751 [quant-ph] .
  13. Except perhaps for error mitigation methods where tunable noise is desired as in zero-noise extrapolation [50, 51].
  14. S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
  15. P. P. Varjú, Doc. Math. 18, 1137 (2012).
  16. P. Diaconis and M. Shahshahani, J. Appl. Prob. 31, 49 (1994).
  17. K. Banaszek and K. Wódkiewicz, Phys. Rev. Lett. 76, 4344 (1996).
  18. Hence, this is not necessarily finite dimensional.
  19. P. Sarnak and P. Buser, Inv. Math. 117, 27 (1994).
  20. D. Kelmer and S. Yu, Int. Math. Res. Not. 2021, 5825–5859 (2019).
  21. F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone,  and S. F. E. Oliviero, “Learning quantum states of continuous variable systems,”  (2024), arXiv:2405.01431 .
  22. N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).
  23. D. Lachance-Quirion, M.-A. Lemonde, J. O. Simoneau, L. St-Jean, P. Lemieux, S. Turcotte, W. Wright, A. Lacroix, J. Fréchette-Viens, R. Shillito, F. Hopfmueller, M. Tremblay, N. E. Frattini, J. C. Lemyre,  and P. St-Jean, “Autonomous quantum error correction of Gottesman-Kitaev-Preskill states,”  (2023), arXiv:2310.11400 .
  24. Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).
  25. S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
  26. F. M. Dopico and C. R. Johnson, SIAM J. Matrix Ana. Appl. 31, 650 (2009).
  27. M. Mosca, A. Tapp,  and R. de Wolf, “Private quantum channels and the cost of randomizing quantum information,”  (2000), arXiv:quant-ph/0003101 .
  28. A. M. Childs, Quant. Inf. Comp. 5, 456 (2005).
  29. E. H. Lieb, Comm. Math. Phys. 31, 327–340 (1973).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube