Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bayesian hierarchical models with calibrated mixtures of g-priors for assessing treatment effect moderation in meta-analysis (2410.24194v1)

Published 31 Oct 2024 in stat.ME and stat.AP

Abstract: Assessing treatment effect moderation is critical in biomedical research and many other fields, as it guides personalized intervention strategies to improve participant's outcomes. Individual participant-level data meta-analysis (IPD-MA) offers a robust framework for such assessments by leveraging data from multiple trials. However, its performance is often compromised by challenges such as high between-trial variability. Traditional Bayesian shrinkage methods have gained popularity, but are less suitable in this context, as their priors do not discern heterogeneous studies. In this paper, we propose the calibrated mixtures of g-priors methods in IPD-MA to enhance efficiency and reduce risk in the estimation of moderation effects. Our approach incorporates a trial-level sample size tuning function, and a moderator-level shrinkage parameter in the prior, offering a flexible spectrum of shrinkage levels that enables practitioners to evaluate moderator importance, from conservative to optimistic perspectives. Compared with existing Bayesian shrinkage methods, our extensive simulation studies demonstrate that the calibrated mixtures of g-priors exhibit superior performances in terms of efficiency and risk metrics, particularly under high between-trial variability, high model sparsity, weak moderation effects and correlated design matrices. We further illustrate their application in assessing effect moderators of two active treatments for major depressive disorder, using IPD from four randomized controlled trials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.