Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

A Power Method for Computing Singular Value Decomposition (2410.23999v2)

Published 31 Oct 2024 in math.NA and cs.NA

Abstract: The singular value decomposition (SVD) allows to put a matrix as a product of three matrices: a matrix with the left singular vectors, a matrix with the positive-valued singular values and a matrix with the right singular vectors. There are two main approaches allowing to get the SVD result: the classical method and the randomized method. The analysis of the classical approach leads to accurate singular values. The randomized approach is especially used for high dimensional matrix and is based on the approximation accuracy without computing necessary all singular values. In this paper, the SVD computation is formalized as an optimization problem and a use of the gradient search algorithm. That results in a power method allowing to get all or the first largest singular values and their associated right vectors. In this iterative search, the accuracy on the singular values and the associated vector matrix depends on the user settings. Two applications of the SVD are the principal component analysis and the autoencoder used in the neural network models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. J. Baglama and L. Reidel. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. SIAM J Sci Comput, 27(1):19–42, 2005.
  2. irlba: Fast Truncated Singular Value Decomposition and Principal Components Analysis for Large Dense and Sparse Matrices. Comprehensive R Archive Network, 2022. R package, version 2.3.5.
  3. NCBI GEO: Archive for Functional Genomics Data Sets-Update. Nucleic Acid Res, 41(Database issue):D991–D995, 2013.
  4. H. Bourlard and Y. Kamp. Auto-Association by Multilayer Perceptrons and Singular Value Decomposition. Biol Cybern, 59:291–294, 1988.
  5. S. Brin and L. Page. The Anatomy of Large-Scale Hypertextual Web Search Engine. In Proc 7th World Wide Web Conf, pages 107–117, 1998.
  6. T. F. Chan. An Improve Algorithm for Computing the Singular Value Decomposition. ACM T Math Soft, 8(1):84–88, 1982.
  7. D. Dembélé. A Method for Computing the Perron Root for Primitive Matrices. Numer Linear Algebra Appl, 28(1):e2340, 2021.
  8. Computing the Singular Value Decomposition with High Relative Accurary. Linear Algebra Appl, 299:21–80, 1999.
  9. C. Eckart and G. Young. The Appromixation of One Matrix by Another of Lower Rank. Psychometrika, 1(3):211–218, 1936.
  10. Randomized Matrix Decompositions Using R. J Stat Soft, 89(11):1–48, 2019.
  11. R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Ann Eugenics, 7:179–188, 1936.
  12. F. G. Frobenius. Ueber Matrizen aus nicht Negativen Elementen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin:456–477, 1912.
  13. G. H. Golub and W. Kahan. Calculating the Singular Values and Pseudo-Inverse of a Matrix. SIAM J Num Anal, 2(2):205–224, 1965.
  14. G. H. Golub and C. Reinsch. Singular Value Decomposition and Least Squares Solutions. Numer Math, 14:403–420, 1970.
  15. G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins Univ Press, Baltimore, 3rd edition, 1996.
  16. M. Gu. Subspace Iteration Randomization and Singular Value Problems. SIAM J Sci Comput, 37(3):1139–1173, 2015.
  17. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approxilate Matrix Decompositions. SIAM Rev, 53(2):217–288, 2011.
  18. Matrix Analysis. Cambridge Univ Press, 2nd edition, 2019.
  19. H. Hotelling. Analysis of a Complex of Statistical Variables into Principal Components. J Educ Psychol, 24(6):417–441, 1933.
  20. I. T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2004.
  21. M. A. Kramer. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE J, 37(2):233–243, 1991.
  22. C. Lanczos. An Iterative Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators. J Res Nat Bur Standards, 45(4):255–282, 1950.
  23. A Survey of Eigenvector Methods for Web Information Retrival. SIAM Rev, 47(1):135–161, 2005.
  24. R. M. Larsen. Lanczos Bidiagonalization with Partial Reorthogonalization. DAIMI Report Series, 27(537):1–101, 1998.
  25. Gradient-Based Learning Applied to Document Recognition. Proc IEEE, 86(11):2278–2324, November 1998.
  26. Randomized Algorithms for the Low-Rank Approximation of Matrices. Proc Natl Acad Sci, USA, 104(51):20167–20172, 2007.
  27. M. Marcus and H. Minc. A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Inc., Boston, 1964.
  28. A Revised Airway Epithelial Hierarchy Includes CFTR-Expressing Ionocytes. Nature, 560(7718):319–324, 2018.
  29. E. Oja. A Simplified Neuron Model as Principal Component Analyzer. J Math Biol, 15:267–273, 1982.
  30. O. Perron. Zur Theorie der Matrices. Mathematiche Annalen, 64(2):248–263, 1907.
  31. The Matrix Cookbook. http://matrixcookbook.com, November 15 2012.
  32. E. Plaut. From Principal Subspaces to Principal Components with Linear Autoencoders. arXiv, page 1804.10253, 2018.
  33. RSpectra: Solvers for Large Scale Eigenvalue and SVD Problems. Comprehensive R Archive Network, 2019. R package, version 0.16-2.
  34. svd: Interfaces to Various State-of-Art SVD and Eigensolvers Software. Comprehensive R Archive Network, 2023. R package, version 0.5.7.
  35. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2024.
  36. E. Raff. Inside Deep Learning: Math, Algorithms Models. Manning, Shelter Island, NY, USA, 2022.
  37. G. W. Stewart. On the Early History of the Singular Value Decomposition. SIAM Review, 35(4):551–566, 1993.
  38. Practical Sketching Algorithms for Low-Rank Matrix Approximation. arXiv, pages 1609–00048, 2018.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)