Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Golub Kahan based on Einstein product (2311.03109v1)

Published 6 Nov 2023 in math.NA and cs.NA

Abstract: The Singular Value Decomposition (SVD) of matrices is a widely used tool in scientific computing. In many applications of machine learning, data analysis, signal and image processing, the large datasets are structured into tensors, for which generalizations of SVD have already been introduced, for various types of tensor-tensor products. In this article, we present innovative methods for approximating this generalization of SVD to tensors in the framework of the Einstein tensor product. These singular elements are called singular values and singular tensors, respectively. The proposed method uses the tensor Lanczos bidiagonalization applied to the Einstein product. In most applications, as in the matrix case, the extremal singular values are of special interest. To enhance the approximation of the largest or the smallest singular triplets (singular values and left and right singular tensors), a restarted method based on Ritz augmentation is proposed. Numerical results are proposed to illustrate the effectiveness of the presented method. In addition, applications to video compression and facial recognition are presented.

Citations (2)

Summary

We haven't generated a summary for this paper yet.