Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

New Combinatorial Insights for Monotone Apportionment (2410.23869v1)

Published 31 Oct 2024 in cs.GT, econ.TH, and math.OC

Abstract: The apportionment problem constitutes a fundamental problem in democratic societies: How to distribute a fixed number of seats among a set of states in proportion to the states' populations? This--seemingly simple--task has led to a rich literature and has become well known in the context of the US House of Representatives. In this paper, we connect the design of monotone apportionment methods to classic problems from discrete geometry and combinatorial optimization and explore the extent to which randomization can enhance proportionality. We first focus on the well-studied family of stationary divisor methods, which satisfy the strong population monotonicity property, and show that this family produces only a slightly superlinear number of different outputs as a function of the number of states. While our upper and lower bounds leave a small gap, we show that--surprisingly--closing this gap would solve a long-standing open problem from discrete geometry, known as the complexity of $k$-levels in line arrangements. The main downside of divisor methods is their violation of the quota axiom, i.e., every state should receive $\lfloor q_i\rfloor$ or $\lceil q_i\rceil$ seats, where $q_i$ is the proportional share of the state. As we show that randomizing over divisor methods can only partially overcome this issue, we propose a relaxed version of divisor methods in which the total number of seats may slightly deviate from the house size. By randomizing over them, we can simultaneously satisfy population monotonicity, quota, and ex-ante proportionality. Finally, we turn our attention to quota-compliant methods that are house-monotone, i.e., no state may lose a seat when the house size is increased. We provide a polyhedral characterization based on network flows, which implies a simple description of all ex-ante proportional randomized methods that are house-monotone and quota-compliant.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: