Acceleration-induced transport of quantum vortices in joined atomtronic circuits
Abstract: Persistent currents--inviscid quantized flow around an atomic circuit--are a crucial building block of atomtronic devices. We investigate how acceleration influences the transfer of persistent currents between two density-connected, ring-shaped atomic Bose-Einstein condensates, joined by a tunable weak link that controls system topology. We find that the acceleration of this system modifies both the density and phase dynamics between the rings, leading to a bias in the periodic vortex oscillations studied in T. Bland et al., Phys. Rev. Research 4, 043171 (2022). Accounting for dissipation suppressing such vortex oscillations, the acceleration facilitates a unilateral vortex transfer to the leading ring. We analyze how this transfer depends on the weak-link amplitude, the initial persistent current configuration, and the acceleration strength and direction. Characterization of the sensitivity to these parameters paves the way for a new platform for acceleration measurements, for which we outline a proof-of-concept ultracold double-ring accelerometer.
- Focus on atomtronics-enabled quantum technologies, New Journal of Physics 19(2), 020201 (2017), 10.1088/1367-2630/aa5a6d.
- Roadmap on atomtronics: State of the art and perspective, AVS Quantum Science 3(3) (2021), 10.1116/5.0026178.
- Colloquium: Atomtronic circuits: From many-body physics to quantum technologies, Reviews of Modern Physics 94(4), 041001 (2022), 10.1103/RevModPhys.94.041001.
- S. S. Szigeti, O. Hosten and S. A. Haine, Improving cold-atom sensors with quantum entanglement: Prospects and challenges, Applied Physics Letters 118(14) (2021), 10.1063/5.0050235.
- Technology roadmap for cold-atoms based quantum inertial sensor in space, AVS Quantum Science 5(1) (2023), 10.1116/5.0098119.
- C. Monroe, Quantum information processing with atoms and photons, Nature 416(6877), 238 (2002), 10.1038/416238a.
- M. Modugno, C. Tozzo and F. Dalfovo, Detecting phonons and persistent currents in toroidal bose-einstein condensates by means of pattern formation, Phys. Rev. A 74, 061601 (2006), 10.1103/PhysRevA.74.061601.
- Observation of persistent flow of a bose-einstein condensate in a toroidal trap, Phys. Rev. Lett. 99, 260401 (2007), 10.1103/PhysRevLett.99.260401.
- Vortex-induced phase-slip dissipation in a toroidal bose-einstein condensate flowing through a barrier, Phys. Rev. A 80, 021601 (2009), 10.1103/PhysRevA.80.021601.
- Current-phase relation of a bose-einstein condensate flowing through a weak link, Phys. Rev. A 81, 033613 (2010), 10.1103/PhysRevA.81.033613.
- Superflow in a toroidal bose-einstein condensate: An atom circuit with a tunable weak link, Phys. Rev. Lett. 106, 130401 (2011), 10.1103/PhysRevLett.106.130401.
- Quantized supercurrent decay in an annular bose-einstein condensate, Phys. Rev. A 86, 013629 (2012), 10.1103/PhysRevA.86.013629.
- Experimental realization of josephson junctions for an atom squid, Phys. Rev. Lett. 111, 205301 (2013), 10.1103/PhysRevLett.111.205301.
- Persistent currents in spinor condensates, Phys. Rev. Lett. 110(2), 025301 (2013), 10.1103/PhysRevLett.110.025301.
- Stability of persistent currents in spinor bose-einstein condensates, Phys. Rev. A 88(5), 051602 (2013), 10.1103/PhysRevA.88.051602.
- Quench-induced supercurrents in an annular bose gas, Phys. Rev. Lett. 113(13), 135302 (2014), 10.1103/PhysRevLett.113.135302.
- Relaxation dynamics in the merging of n independent condensates, Phys. Rev. Lett. 119(19), 190403 (2017), 10.1103/PhysRevLett.119.190403.
- C. Ryu, E. C. Samson and M. G. Boshier, Quantum interference of currents in an atomtronic SQUID, Nature Communications 11, 3338 (2020), 10.1038/s41467-020-17185-6.
- Imprinting persistent currents in tunable fermionic rings, Physical Review X 12(4), 041037 (2022), 10.1103/PhysRevX.12.041037.
- Persistent currents in ultracold gases, arXiv preprint arXiv:2410.17318 (2024), 10.48550/arXiv.2410.17318.
- G. Pelegrí, J. Mompart and V. Ahufinger, Quantum sensing using imbalanced counter-rotating bose–einstein condensate modes, New Journal of Physics 20(10), 103001 (2018), 10.1088/1367-2630/aae107.
- Quantum interference of currents in an atomtronic squid, Nature communications 11(1), 3338 (2020), 10.1038/s41467-020-17185-6.
- Enhancing sensitivity to rotations with quantum solitonic currents, SciPost Physics 12(4), 138 (2022), 10.21468/SciPostPhys.12.4.138.
- J. F. Clauser, Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry, Physica B+ C 151(1-2), 262 (1988), 10.1016/0378-4363(88)90176-3.
- Mobile quantum gravity sensor with unprecedented stability, In Journal of physics: conference series, vol. 723, p. 012050. IOP Publishing, 10.1088/1742-6596/723/1/012050 (2016).
- Simultaneous precision gravimetry and magnetic gradiometry with a bose-einstein condensate: A high precision, quantum sensor, Phys. Rev. Lett. 117(13), 138501 (2016), 10.1103/PhysRevLett.117.138501.
- Gravity measurements below 10- 9 g with a transportable absolute quantum gravimeter, Scientific reports 8(1), 12300 (2018), 10.1038/s41598-018-30608-1.
- Absolute marine gravimetry with matter-wave interferometry, Nature communications 9(1), 627 (2018), 10.1038/s41467-018-03040-2.
- Absolute airborne gravimetry with a cold atom sensor, Journal of Geodesy 94, 1 (2020), 10.1007/s00190-020-01350-2.
- Tracking the vector acceleration with a hybrid quantum accelerometer triad, Science Advances 8(45), eadd3854 (2022), 10.1126/sciadv.add3854.
- Taking atom interferometric quantum sensors from the laboratory to real-world applications, Nature Reviews Physics 1(12), 731 (2019), 10.1038/s42254-019-0117-4.
- Persistent current oscillations in a double-ring quantum gas, Physical Review Research 4(4) (2022), 10.1103/physrevresearch.4.043171.
- Persistent current formation in double-ring geometries, Journal of Physics B: Atomic, Molecular and Optical Physics 53(11), 115301 (2020), 10.1088/1361-6455/ab81e9.
- Driving phase slips in a superfluid atom circuit with a rotating weak link, Phys. Rev. Lett. 110, 025302 (2013), 10.1103/PhysRevLett.110.025302.
- B. Jackson, J. McCann and C. Adams, Vortex line and ring dynamics in trapped bose-einstein condensates, Phys. Rev. A 61(1), 013604 (1999), 10.1103/PhysRevA.61.013604.
- N. P. Proukakis and B. Jackson, Finite-temperature models of bose–einstein condensation, Journal of Physics B: Atomic, Molecular and Optical Physics 41(20), 203002 (2008), 10.1088/0953-4075/41/20/203002.
- Dynamics and statistical mechanics of ultra-cold bose gases using c-field techniques, Advances in Physics 57(5), 363 (2008), 10.1080/00018730802564254.
- A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed gases at finite temperatures, Cambridge University Press (2009).
- N. G. Berloff, M. Brachet and N. P. Proukakis, Modeling quantum fluid dynamics at nonzero temperatures, Proceedings of the National Academy of Sciences 111(supplement_1), 4675 (2014), 10.1073/pnas.1312549111.
- L. Pitaevskii, Phenomenological theory of superfluidity near the λ𝜆\lambdaitalic_λ point, Sov. Phys.—JETP 8, 282 (1959).
- M. Tsubota, K. Kasamatsu and M. Ueda, Vortex lattice formation in a rotating bose-einstein condensate, Phys. Rev. A 65(2), 023603 (2002), 10.1103/PhysRevA.65.023603.
- S. Choi, S. Morgan and K. Burnett, Phenomenological damping in trapped atomic bose-einstein condensates, Phys. Rev. A 57(5), 4057 (1998), 10.1103/PhysRevA.57.4057.
- Parametric driving of dark solitons in atomic bose-einstein condensates, Phys. Rev. Lett. 93, 130408 (2004), 10.1103/PhysRevLett.93.130408.
- A. Rançon and K. Levin, Equilibrating dynamics in quenched bose gases: Characterizing multiple time regimes, Phys. Rev. A 90(2) (2014), 10.1103/physreva.90.021602.
- A. S. Bradley, C. W. Gardiner and M. J. Davis, Bose-einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation, Phys. Rev. A 77, 033616 (2008), 10.1103/PhysRevA.77.033616.
- Spontaneous vortices in the formation of bose–einstein condensates, Nature 455(7215), 948 (2008), 10.1038/nature07334.
- The stochastic Gross-Pitaevskii equation and some applications, Laser Physics 19(4), 558 (2009), 10.1134/s1054660x09040057.
- Matter-wave dark solitons: Stochastic versus analytical results, Phys. Rev. Lett. 104, 174101 (2010), 10.1103/PhysRevLett.104.174101.
- Fluctuating and dissipative dynamics of dark solitons in quasicondensates, Phys. Rev. A 84, 043640 (2011), 10.1103/PhysRevA.84.043640.
- Winding up superfluid in a torus via bose einstein condensation, Scientific reports 2(1), 352 (2012), 10.1038/srep00352.
- A rapidly expanding bose-einstein condensate: an expanding universe in the lab, Physical Review X 8(2), 021021 (2018), 10.1103/PhysRevX.8.021021.
- Superflow decay in a toroidal bose gas: The effect of quantum and thermal fluctuations, SciPost Physics 11(4), 080 (2021), 10.21468/SciPostPhys.11.4.080.
- K. Kasamatsu, M. Tsubota and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating bose-einstein condensate, Phys. Rev. A 67(3), 033610 (2003), 10.1103/PhysRevA.67.033610.
- Glitches in rotating supersolids, Phys. Rev. Lett. 131(22), 223401 (2023), 10.1103/PhysRevLett.131.223401.
- Minimally destructive, doppler measurement of a quantized flow in a ring-shaped bose–einstein condensate, New Journal of Physics 18(2), 025001 (2016), 10.1088/1367-2630/18/2/025001.
- Monitoring currents in cold-atom circuits, Phys. Rev. A 100(1), 013621 (2019), 10.1103/PhysRevA.100.013621.
- Persistent-current formation in a high-temperature bose-einstein condensate: An experimental test for classical-field theory, Phys. Rev. A 88, 063620 (2013), 10.1103/PhysRevA.88.063620.
- Dynamical equilibration across a quenched phase transition in a trapped quantum gas, Communications Physics 1(1), 1 (2018), 10.1038/s42005-018-0023-6.
- Collisionless sound in a uniform two-dimensional Bose gas, Phys. Rev. Lett. 121, 145302 (2018), 10.1103/PhysRevLett.121.145302.
- Superflow decay in a toroidal Bose gas: The effect of quantum and thermal fluctuations, SciPost Phys. 11, 080 (2021), 10.21468/SciPostPhys.11.4.080.
- Optimizing persistent currents in a ring-shaped bose-einstein condensate using machine learning, Phys. Rev. A 108(6), 063306 (2023), 10.1103/PhysRevA.108.063306.
- Hysteresis in a quantized superfluid ‘atomtronic’ circuit, Nature 506(7487), 200–203 (2014), 10.1038/nature12958.
- Probing the circulation of ring-shaped bose-einstein condensates, Phys. Rev. A 88(5), 053615 (2013), 10.1103/PhysRevA.88.053615.
- S. Takagi, Quantum Dynamics and Non-Inertial Frames of Reference. I: Generality, Progress of Theoretical Physics 85(3), 463 (1991), 10.1143/ptp/85.3.463.
- L. Wen, H. Xiong and B. Wu, Hidden vortices in a bose-einstein condensate in a rotating double-well potential, Phys. Rev. A 82(5) (2010), 10.1103/physreva.82.053627.
- Vortices in a toroidal bose-einstein condensate with a rotating weak link, Phys. Rev. A 91(3) (2015), 10.1103/physreva.91.033607.
- Q.-L. Zhu and J. An, Surface excitations, shape deformation, and the long-time behavior in a stirred bose–einstein condensate, Condensed Matter 3(4), 41 (2018), 10.3390/condmat3040041.
- Stochastic phase slips in toroidal bose-einstein condensates, Phys. Rev. A 94(6) (2016), 10.1103/physreva.94.063642.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.