Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Untrained Filtering with Trained Focusing for Superior Quantum Architecture Search (2410.23560v2)

Published 31 Oct 2024 in quant-ph

Abstract: Quantum architecture search (QAS) represents a fundamental challenge in quantum machine learning. Unlike previous methods that treat it as a static search process, from a perspective on QAS as an item retrieval task in vast search space, we decompose the search process into dynamic alternating phases of coarse and fine-grained knowledge learning. We propose quantum untrained-explored synergistic trained architecture (QUEST-A),a framework through coarse-grained untrained filtering for rapid search space reduction and fine-grained trained focusing for precise space refinement in progressive QAS. QUEST-A develops an evolutionary mechanism with knowledge accumulation and reuse to enhance multi-level knowledge transfer in architecture searching. Experiments demonstrate QUEST-A's superiority over existing methods: enhancing model expressivity in signal representation, maintaining high performance across varying complexities in image classification, and achieving order-of-magnitude precision improvements in variational quantum eigensolver tasks, providing a transferable methodology for QAS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Élivágar: Efficient quantum circuit search for classification, in: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, pp. 336–353. doi:https://doi.org/10.1145/3620665.3640354.
  2. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 doi:https://doi.org/10.48550/arXiv.1811.04968.
  3. Quantum machine learning. Nature 549, 195–202. doi:https://doi.org/10.1038/nature23474.
  4. Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint arXiv:2003.02989 doi:https://doi.org/10.48550/arXiv.2003.02989.
  5. Bandwidth enables generalization in quantum kernel models. arXiv preprint arXiv:2206.06686 doi:https://doi.org/10.1088/1742-5468/2013/03/P03014.
  6. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12, 1791. doi:https://doi.org/10.1038/s41467-021-21728-w.
  7. Quantum variational optimization: The role of entanglement and problem hardness. Physical Review A 104, 062426. doi:https://doi.org/10.1103/PhysRevA.104.062426.
  8. Quantum circuit architecture search for variational quantum algorithms. npj Quantum Information 8, 62. doi:https://doi.org/10.1038/s41534-022-00570-y.
  9. Quantum circuit synthesis and compilation optimization: Overview and prospects. arXiv preprint arXiv:2407.00736 doi:https://doi.org/10.48550/arXiv.2407.00736.
  10. Quantum convolutional neural network based on variational quantum circuits. Optics Communications 550, 129993. doi:https://doi.org/10.1016/j.optcom.2023.129993.
  11. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212. doi:https://doi.org/10.1038/s41586-019-0980-2.
  12. A meta-trained generator for quantum architecture search. EPJ Quantum Technology 11, 44. doi:https://doi.org/10.1140/epjqt/s40507-024-00255-9.
  13. Training-free quantum architecture search, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12430–12438. doi:https://doi.org/10.1609/aaai.v38i11.29135.
  14. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313. doi:https://doi.org/10.1103/PRXQuantum.3.010313.
  15. Quantum advantage in learning from experiments. Science 376, 1182–1186. doi:https://doi.org/10.1126/science.abn7293.
  16. Power of data in quantum machine learning. Nature communications 12, 2631. doi:https://doi.org/10.1038/s41467-021-22539-9.
  17. Maxima of entries of haar distributed matrices. Probability Theory and Related Fields 131, 121–144. doi:https://doi.org/10.1007/s00440-004-0376-5.
  18. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature 549, 242–246. doi:https://doi.org/10.1038/nature23879.
  19. Quantum autoencoders via quantum adders with genetic algorithms. Quantum Science and Technology 4, 014007. doi:https://doi.org/10.1088/2058-9565/aae22b.
  20. Multi-class quantum classifiers with tensor network circuits for quantum phase recognition. Physics Letters A 434, 128056. doi:https://doi.org/10.1016/j.physleta.2022.128056.
  21. Qas-bench: rethinking quantum architecture search and a benchmark, in: International Conference on Machine Learning, PMLR. pp. 22880–22898. doi:https://proceedings.mlr.press/v202/lu23f.html.
  22. Continuous evolution for efficient quantum architecture search. EPJ Quantum Technology 11, 54. doi:https://doi.org/10.1140/epjqt/s40507-024-00265-7.
  23. Barren plateaus in quantum neural network training landscapes. Nature communications 9, 4812. doi:https://doi.org/10.1038/s41467-018-07090-4.
  24. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM 65, 99–106. doi:https://doi.org/10.1145/3503250.
  25. Backpropagation-free training of deep physical neural networks. Science 382, 1297–1303. doi:https://doi.org/10.1126/science.adi8474.
  26. Entangling quantum generative adversarial networks. Physical review letters 128, 220505. doi:https://doi.org/10.1103/PhysRevLett.128.220505.
  27. Demonstration of a bosonic quantum classifier with data reuploading. Physical review letters 131, 013601. doi:https://doi.org/10.1103/PhysRevLett.131.013601.
  28. Data re-uploading for a universal quantum classifier. Quantum 4, 226. doi:https://doi.org/10.22331/q-2020-02-06-226.
  29. Quantum computing in the nisq era and beyond. Quantum 2, 79. doi:https://doi.org/10.22331/q-2018-08-06-79.
  30. Adaptive quantum state tomography with neural networks. npj Quantum Information 7, 105. doi:https://doi.org/10.1038/s41534-021-00436-9.
  31. Quilt: Effective multi-class classification on quantum computers using an ensemble of diverse quantum classifiers, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8324–8332. doi:https://doi.org/10.1609/aaai.v36i8.20807.
  32. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2, 1900070. doi:https://doi.org/10.1002/qute.201900070.
  33. Implicit neural representations with periodic activation functions. Advances in neural information processing systems 33, 7462–7473.
  34. Subtleties in the trainability of quantum machine learning models. Quantum Machine Intelligence 5, 21. doi:https://doi.org/10.1007/s42484-023-00103-6.
  35. Automated reasoning in quantum circuit compilation, in: International Symposium on Model Checking Software, Springer. pp. 106–134. doi:https://doi.org/10.1007/978-3-031-66149-5_6.
  36. scikit-image: image processing in python. PeerJ 2, e453. doi:https://doi.org/10.7717/peerj.453.
  37. Quantumnas: Noise-adaptive search for robust quantum circuits, in: 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), IEEE. pp. 692–708. doi:https://doi.org/10.1109/HPCA53966.2022.00057.
  38. Automated quantum circuit design with nested monte carlo tree search. IEEE Transactions on Quantum Engineering 4, 1–20. doi:https://doi.org/10.1109/TQE.2023.3265709.
  39. Automated design of quantum circuits, in: NASA International Conference on Quantum Computing and Quantum Communications, Springer. pp. 113–125. doi:https://doi.org/10.1007/3-540-49208-9_8.
  40. Quantumdarts: differentiable quantum architecture search for variational quantum algorithms, in: International Conference on Machine Learning, PMLR. pp. 37745–37764. doi:https://proceedings.mlr.press/v202/wu23v.html.
  41. Mindspore quantum: a user-friendly, high-performance, and ai-compatible quantum computing framework. arXiv preprint arXiv:2406.17248 doi:https://doi.org/10.48550/arXiv.2406.17248.
  42. Qusl: Quantum unsupervised image similarity learning with enhanced performance. Expert Systems with Applications 258, 125112. doi:https://doi.org/10.1016/j.eswa.2024.125112.
  43. Neural predictor based quantum architecture search. Machine Learning: Science and Technology 2, 045027. doi:https://doi.org/10.1088/2632-2153/ac28dd.
  44. Differentiable quantum architecture search. Quantum Science and Technology 7, 045023. doi:https://doi.org/10.1088/2058-9565/ac87cd.
  45. Quantum implicit neural representations. arXiv preprint arXiv:2406.03873 doi:https://doi.org/10.48550/arXiv.2406.03873.
  46. Training-free transformer architecture search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10894–10903. doi:https://openaccess.thecvf.com/content/CVPR2022/html/Zhou_Training-Free_Transformer_Architecture_Search_CVPR_2022_paper.html.
  47. Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15. doi:https://doi.org/10.1007/s42484-020-00033-7.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube