Untrained Filtering with Trained Focusing for Superior Quantum Architecture Search (2410.23560v2)
Abstract: Quantum architecture search (QAS) represents a fundamental challenge in quantum machine learning. Unlike previous methods that treat it as a static search process, from a perspective on QAS as an item retrieval task in vast search space, we decompose the search process into dynamic alternating phases of coarse and fine-grained knowledge learning. We propose quantum untrained-explored synergistic trained architecture (QUEST-A),a framework through coarse-grained untrained filtering for rapid search space reduction and fine-grained trained focusing for precise space refinement in progressive QAS. QUEST-A develops an evolutionary mechanism with knowledge accumulation and reuse to enhance multi-level knowledge transfer in architecture searching. Experiments demonstrate QUEST-A's superiority over existing methods: enhancing model expressivity in signal representation, maintaining high performance across varying complexities in image classification, and achieving order-of-magnitude precision improvements in variational quantum eigensolver tasks, providing a transferable methodology for QAS.
- Élivágar: Efficient quantum circuit search for classification, in: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, pp. 336–353. doi:https://doi.org/10.1145/3620665.3640354.
- Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 doi:https://doi.org/10.48550/arXiv.1811.04968.
- Quantum machine learning. Nature 549, 195–202. doi:https://doi.org/10.1038/nature23474.
- Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint arXiv:2003.02989 doi:https://doi.org/10.48550/arXiv.2003.02989.
- Bandwidth enables generalization in quantum kernel models. arXiv preprint arXiv:2206.06686 doi:https://doi.org/10.1088/1742-5468/2013/03/P03014.
- Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12, 1791. doi:https://doi.org/10.1038/s41467-021-21728-w.
- Quantum variational optimization: The role of entanglement and problem hardness. Physical Review A 104, 062426. doi:https://doi.org/10.1103/PhysRevA.104.062426.
- Quantum circuit architecture search for variational quantum algorithms. npj Quantum Information 8, 62. doi:https://doi.org/10.1038/s41534-022-00570-y.
- Quantum circuit synthesis and compilation optimization: Overview and prospects. arXiv preprint arXiv:2407.00736 doi:https://doi.org/10.48550/arXiv.2407.00736.
- Quantum convolutional neural network based on variational quantum circuits. Optics Communications 550, 129993. doi:https://doi.org/10.1016/j.optcom.2023.129993.
- Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212. doi:https://doi.org/10.1038/s41586-019-0980-2.
- A meta-trained generator for quantum architecture search. EPJ Quantum Technology 11, 44. doi:https://doi.org/10.1140/epjqt/s40507-024-00255-9.
- Training-free quantum architecture search, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12430–12438. doi:https://doi.org/10.1609/aaai.v38i11.29135.
- Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313. doi:https://doi.org/10.1103/PRXQuantum.3.010313.
- Quantum advantage in learning from experiments. Science 376, 1182–1186. doi:https://doi.org/10.1126/science.abn7293.
- Power of data in quantum machine learning. Nature communications 12, 2631. doi:https://doi.org/10.1038/s41467-021-22539-9.
- Maxima of entries of haar distributed matrices. Probability Theory and Related Fields 131, 121–144. doi:https://doi.org/10.1007/s00440-004-0376-5.
- Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature 549, 242–246. doi:https://doi.org/10.1038/nature23879.
- Quantum autoencoders via quantum adders with genetic algorithms. Quantum Science and Technology 4, 014007. doi:https://doi.org/10.1088/2058-9565/aae22b.
- Multi-class quantum classifiers with tensor network circuits for quantum phase recognition. Physics Letters A 434, 128056. doi:https://doi.org/10.1016/j.physleta.2022.128056.
- Qas-bench: rethinking quantum architecture search and a benchmark, in: International Conference on Machine Learning, PMLR. pp. 22880–22898. doi:https://proceedings.mlr.press/v202/lu23f.html.
- Continuous evolution for efficient quantum architecture search. EPJ Quantum Technology 11, 54. doi:https://doi.org/10.1140/epjqt/s40507-024-00265-7.
- Barren plateaus in quantum neural network training landscapes. Nature communications 9, 4812. doi:https://doi.org/10.1038/s41467-018-07090-4.
- Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM 65, 99–106. doi:https://doi.org/10.1145/3503250.
- Backpropagation-free training of deep physical neural networks. Science 382, 1297–1303. doi:https://doi.org/10.1126/science.adi8474.
- Entangling quantum generative adversarial networks. Physical review letters 128, 220505. doi:https://doi.org/10.1103/PhysRevLett.128.220505.
- Demonstration of a bosonic quantum classifier with data reuploading. Physical review letters 131, 013601. doi:https://doi.org/10.1103/PhysRevLett.131.013601.
- Data re-uploading for a universal quantum classifier. Quantum 4, 226. doi:https://doi.org/10.22331/q-2020-02-06-226.
- Quantum computing in the nisq era and beyond. Quantum 2, 79. doi:https://doi.org/10.22331/q-2018-08-06-79.
- Adaptive quantum state tomography with neural networks. npj Quantum Information 7, 105. doi:https://doi.org/10.1038/s41534-021-00436-9.
- Quilt: Effective multi-class classification on quantum computers using an ensemble of diverse quantum classifiers, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8324–8332. doi:https://doi.org/10.1609/aaai.v36i8.20807.
- Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2, 1900070. doi:https://doi.org/10.1002/qute.201900070.
- Implicit neural representations with periodic activation functions. Advances in neural information processing systems 33, 7462–7473.
- Subtleties in the trainability of quantum machine learning models. Quantum Machine Intelligence 5, 21. doi:https://doi.org/10.1007/s42484-023-00103-6.
- Automated reasoning in quantum circuit compilation, in: International Symposium on Model Checking Software, Springer. pp. 106–134. doi:https://doi.org/10.1007/978-3-031-66149-5_6.
- scikit-image: image processing in python. PeerJ 2, e453. doi:https://doi.org/10.7717/peerj.453.
- Quantumnas: Noise-adaptive search for robust quantum circuits, in: 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), IEEE. pp. 692–708. doi:https://doi.org/10.1109/HPCA53966.2022.00057.
- Automated quantum circuit design with nested monte carlo tree search. IEEE Transactions on Quantum Engineering 4, 1–20. doi:https://doi.org/10.1109/TQE.2023.3265709.
- Automated design of quantum circuits, in: NASA International Conference on Quantum Computing and Quantum Communications, Springer. pp. 113–125. doi:https://doi.org/10.1007/3-540-49208-9_8.
- Quantumdarts: differentiable quantum architecture search for variational quantum algorithms, in: International Conference on Machine Learning, PMLR. pp. 37745–37764. doi:https://proceedings.mlr.press/v202/wu23v.html.
- Mindspore quantum: a user-friendly, high-performance, and ai-compatible quantum computing framework. arXiv preprint arXiv:2406.17248 doi:https://doi.org/10.48550/arXiv.2406.17248.
- Qusl: Quantum unsupervised image similarity learning with enhanced performance. Expert Systems with Applications 258, 125112. doi:https://doi.org/10.1016/j.eswa.2024.125112.
- Neural predictor based quantum architecture search. Machine Learning: Science and Technology 2, 045027. doi:https://doi.org/10.1088/2632-2153/ac28dd.
- Differentiable quantum architecture search. Quantum Science and Technology 7, 045023. doi:https://doi.org/10.1088/2058-9565/ac87cd.
- Quantum implicit neural representations. arXiv preprint arXiv:2406.03873 doi:https://doi.org/10.48550/arXiv.2406.03873.
- Training-free transformer architecture search, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10894–10903. doi:https://openaccess.thecvf.com/content/CVPR2022/html/Zhou_Training-Free_Transformer_Architecture_Search_CVPR_2022_paper.html.
- Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15. doi:https://doi.org/10.1007/s42484-020-00033-7.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.