Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Tightening convex relaxations of trained neural networks: a unified approach for convex and S-shaped activations (2410.23362v1)

Published 30 Oct 2024 in math.OC and cs.LG

Abstract: The non-convex nature of trained neural networks has created significant obstacles in their incorporation into optimization models. Considering the wide array of applications that this embedding has, the optimization and deep learning communities have dedicated significant efforts to the convexification of trained neural networks. Many approaches to date have considered obtaining convex relaxations for each non-linear activation in isolation, which poses limitations in the tightness of the relaxations. Anderson et al. (2020) strengthened these relaxations and provided a framework to obtain the convex hull of the graph of a piecewise linear convex activation composed with an affine function; this effectively convexifies activations such as the ReLU together with the affine transformation that precedes it. In this article, we contribute to this line of work by developing a recursive formula that yields a tight convexification for the composition of an activation with an affine function for a wide scope of activation functions, namely, convex or ``S-shaped". Our approach can be used to efficiently compute separating hyperplanes or determine that none exists in various settings, including non-polyhedral cases. We provide computational experiments to test the empirical benefits of these convex approximations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: