Papers
Topics
Authors
Recent
2000 character limit reached

On the time-dependent density of quadratically coupled dark matter around ordinary matter objects (2410.23350v1)

Published 30 Oct 2024 in hep-ph, astro-ph.CO, and gr-qc

Abstract: Wave-like dark matter may feature quadratic couplings to ordinary matter. This carries profound consequences for the phenomenologies of such models. It changes the dark matter density around dense objects made from ordinary matter such as planets and stars, thereby changing the sensitivity of direct detection experiments on Earth as well as implying forces on other ordinary matter objects in the vicinity. In this note we study the time dependence of the dark matter field around spherical objects of ordinary matter. This work indicates the time-scale on which accelerating objects settle into a stationary state and delineates the applicability of stationary solutions for experimental dark matter tests. We also use this to understand (and effectively eliminate) the infinities in energies, forces, and pressures that appear when naively comparing the total energy around objects with different size but the same total number of ordinary matter particles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
  2. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
  3. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
  4. F. Piazza and M. Pospelov, “Sub-eV scalar dark matter through the super-renormalizable Higgs portal,” Phys. Rev. D 82 (2010) 043533, arXiv:1003.2313 [hep-ph].
  5. A. E. Nelson and J. Scholtz, “Dark Light, Dark Matter and the Misalignment Mechanism,” Phys. Rev. D 84 (2011) 103501, arXiv:1105.2812 [hep-ph].
  6. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, “WISPy Cold Dark Matter,” JCAP 06 (2012) 013, arXiv:1201.5902 [hep-ph].
  7. P. Sikivie, “Axion Cosmology,” Lect. Notes Phys. 741 (2008) 19–50, arXiv:astro-ph/0610440.
  8. J. Jaeckel and A. Ringwald, “The Low-Energy Frontier of Particle Physics,” Ann. Rev. Nucl. Part. Sci. 60 (2010) 405–437, arXiv:1002.0329 [hep-ph].
  9. D. J. E. Marsh, “Axion Cosmology,” Phys. Rept. 643 (2016) 1–79, arXiv:1510.07633 [astro-ph.CO].
  10. L. Hui, “Wave Dark Matter,” Ann. Rev. Astron. Astrophys. 59 (2021) 247–289, arXiv:2101.11735 [astro-ph.CO].
  11. C. B. Adams et al., “Axion Dark Matter,” in Snowmass 2021. 3, 2022. arXiv:2203.14923 [hep-ex].
  12. D. Antypas et al., “New Horizons: Scalar and Vector Ultralight Dark Matter,” arXiv:2203.14915 [hep-ex].
  13. P. Sikivie, “Experimental Tests of the Invisible Axion,” Phys. Rev. Lett. 51 (1983) 1415–1417. [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
  14. I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102 (2018) 89–159, arXiv:1801.08127 [hep-ph].
  15. L. B. Okun, “LIMITS OF ELECTRODYNAMICS: PARAPHOTONS?,” Sov. Phys. JETP 56 (1982) 502.
  16. B. Holdom, “Two U(1)’s and Epsilon Charge Shifts,” Phys. Lett. B 166 (1986) 196–198.
  17. R. Foot and X.-G. He, “Comment on Z Z-prime mixing in extended gauge theories,” Phys. Lett. B 267 (1991) 509–512.
  18. T. Binoth and J. J. van der Bij, “Influence of strongly coupled, hidden scalars on Higgs signals,” Z. Phys. C 75 (1997) 17–25, arXiv:hep-ph/9608245.
  19. R. M. Schabinger and J. D. Wells, “A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider,” Phys. Rev. D 72 (2005) 093007, arXiv:hep-ph/0509209.
  20. B. Patt and F. Wilczek, “Higgs-field portal into hidden sectors,” arXiv:hep-ph/0605188.
  21. M. Ahlers, J. Jaeckel, J. Redondo, and A. Ringwald, “Probing Hidden Sector Photons through the Higgs Window,” Phys. Rev. D 78 (2008) 075005, arXiv:0807.4143 [hep-ph].
  22. B. Batell, M. Pospelov, and A. Ritz, “Probing a Secluded U(1) at B-factories,” Phys. Rev. D 79 (2009) 115008, arXiv:0903.0363 [hep-ph].
  23. J. Beacham et al., “Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report,” J. Phys. G 47 no. 1, (2020) 010501, arXiv:1901.09966 [hep-ex].
  24. A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, and P. Wolf, “Violation of the equivalence principle from light scalar dark matter,” Phys. Rev. D 98 no. 6, (2018) 064051, arXiv:1807.04512 [gr-qc].
  25. A. Banerjee, G. Perez, M. Safronova, I. Savoray, and A. Shalit, “The phenomenology of quadratically coupled ultra light dark matter,” JHEP 10 (2023) 042, arXiv:2211.05174 [hep-ph].
  26. C. Englert and J. Jaeckel, “Probing the Symmetric Higgs Portal with Di-Higgs Boson Production,” Phys. Rev. D 100 no. 9, (2019) 095017, arXiv:1908.10615 [hep-ph].
  27. C. Englert, J. Jaeckel, M. Spannowsky, and P. Stylianou, “Power meets Precision to explore the Symmetric Higgs Portal,” Phys. Lett. B 806 (2020) 135526, arXiv:2002.07823 [hep-ph].
  28. A. Hook and J. Huang, “Probing axions with neutron star inspirals and other stellar processes,” JHEP 06 (2018) 036, arXiv:1708.08464 [hep-ph].
  29. H. Kim, A. Lenoci, G. Perez, and W. Ratzinger, “Probing an ultralight QCD axion with electromagnetic quadratic interaction,” Phys. Rev. D 109 no. 1, (2024) 015030, arXiv:2307.14962 [hep-ph].
  30. M. Bauer and G. Rostagni, “Fifth Forces from QCD Axions Scale Differently,” Phys. Rev. Lett. 132 no. 10, (2024) 101802, arXiv:2307.09516 [hep-ph].
  31. M. Bauer, S. Chakraborti, and G. Rostagni, “Axion Bounds from Quantum Technology,” arXiv:2408.06412 [hep-ph].
  32. M. Bauer and S. Chakraborti, “On the Validity of Bounds on Light Axions for f≲1015less-than-or-similar-to𝑓superscript1015f\lesssim 10^{15}italic_f ≲ 10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT GeV,” arXiv:2408.06408 [hep-ph].
  33. Y. Garcia del Castillo, B. Hammett, and J. Jaeckel, “in preparation.”.
  34. D. F. Jackson Kimball et al., “Overview of the Cosmic Axion Spin Precession Experiment (CASPEr),” Springer Proc. Phys. 245 (2020) 105–121, arXiv:1711.08999 [physics.ins-det].
  35. P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran, and W. A. Terrano, “Dark Matter Direct Detection with Accelerometers,” Phys. Rev. D 93 no. 7, (2016) 075029, arXiv:1512.06165 [hep-ph].
  36. “Earth.” https://en.wikipedia.org/wiki/Earth.
  37. MICROSCOPE Collaboration, P. Touboul et al., “MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle,” Phys. Rev. Lett. 129 no. 12, (2022) 121102, arXiv:2209.15487 [gr-qc].
  38. H. Morse and P. M. Feshbach, Methods of Theoretical Physics. McGraw-Hill, 1953.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.