Observable CMB B-modes from Cosmological Phase Transitions (2410.23348v2)
Abstract: A B-mode polarization signal in the cosmic microwave background (CMB) is widely regarded as smoking gun evidence for gravitational waves produced during inflation. Here we demonstrate that tensor perturbations from a cosmological phase transition can produce a B-mode signal whose strength rivals that of testable inflationary predictions across a range of observable scales. Although phase transitions arise from causal sub-horizon physics, they nevertheless exhibit a white noise power spectrum on super-horizon scales. Power is suppressed on the large scales relevant for CMB B-mode polarization, but it is not necessarily negligible. For appropriately chosen phase transition parameters, the maximal B-mode amplitude can compete with inflationary predictions that can be tested with current and future experiments. These scenarios can be differentiated by performing measurements on multiple angular scales, since the phase transition signal predicts peak power on smaller scales.
- D. Baumann, “Inflation,” in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 523–686. 2011. arXiv:0907.5424 [hep-th].
- J. Ellis and D. Wands, “Inflation (2023),” arXiv:2312.13238 [astro-ph.CO].
- A. Kosowsky, “Cosmic microwave background polarization,” Annals Phys. 246 (1996) 49–85, arXiv:astro-ph/9501045.
- M. Kamionkowski, A. Kosowsky, and A. Stebbins, “A Probe of primordial gravity waves and vorticity,” Phys. Rev. Lett. 78 (1997) 2058–2061, arXiv:astro-ph/9609132.
- U. Seljak and M. Zaldarriaga, “Signature of gravity waves in polarization of the microwave background,” Phys. Rev. Lett. 78 (1997) 2054–2057, arXiv:astro-ph/9609169.
- M. Kamionkowski, A. Kosowsky, and A. Stebbins, “Statistics of cosmic microwave background polarization,” Phys. Rev. D 55 (1997) 7368–7388, arXiv:astro-ph/9611125.
- M. Zaldarriaga and U. Seljak, “An all sky analysis of polarization in the microwave background,” Phys. Rev. D 55 (1997) 1830–1840, arXiv:astro-ph/9609170.
- U. Seljak, “Measuring polarization in cosmic microwave background,” Astrophys. J. 482 (1997) 6, arXiv:astro-ph/9608131.
- W. Hu and M. J. White, “A CMB polarization primer,” New Astron. 2 (1997) 323, arXiv:astro-ph/9706147.
- S. Dodelson, E. Rozo, and A. Stebbins, “Primordial gravity waves and weak lensing,” Phys. Rev. Lett. 91 (2003) 021301, arXiv:astro-ph/0301177.
- T. L. Smith, M. Kamionkowski, and A. Cooray, “Direct detection of the inflationary gravitational wave background,” Phys. Rev. D 73 (2006) 023504, arXiv:astro-ph/0506422.
- M. J. Mortonson, C. Dvorkin, H. V. Peiris, and W. Hu, “CMB polarization features from inflation versus reionization,” Phys. Rev. D 79 (2009) 103519, arXiv:0903.4920 [astro-ph.CO].
- M. Kamionkowski and E. D. Kovetz, “The Quest for B Modes from Inflationary Gravitational Waves,” Ann. Rev. Astron. Astrophys. 54 (2016) 227–269, arXiv:1510.06042 [astro-ph.CO].
- M. C. Guzzetti, N. Bartolo, M. Liguori, and S. Matarrese, “Gravitational waves from inflation,” Riv. Nuovo Cim. 39 no. 9, (2016) 399–495, arXiv:1605.01615 [astro-ph.CO].
- S. Weinberg, “Damping of tensor modes in cosmology,” Phys. Rev. D 69 (2004) 023503, arXiv:astro-ph/0306304.
- R. Flauger and S. Weinberg, “Tensor Microwave Background Fluctuations for Large Multipole Order,” Phys. Rev. D 75 (2007) 123505, arXiv:astro-ph/0703179.
- D. Baumann, D. Green, and R. A. Porto, “B-modes and the Nature of Inflation,” JCAP 01 (2015) 016, arXiv:1407.2621 [hep-th].
- BICEP2 Collaboration, P. A. R. Ade et al., “Detection of B𝐵Bitalic_B-Mode Polarization at Degree Angular Scales by BICEP2,” Phys. Rev. Lett. 112 no. 24, (2014) 241101, arXiv:1403.3985 [astro-ph.CO].
- M. Geller, S. Lu, and Y. Tsai, “B modes from postinflationary gravitational waves sourced by axionic instabilities at cosmic reionization,” Phys. Rev. D 104 no. 8, (2021) 083517, arXiv:2104.08284 [hep-ph].
- A. Kosowsky, M. S. Turner, and R. Watkins, “Gravitational waves from first order cosmological phase transitions,” Phys. Rev. Lett. 69 (1992) 2026–2029.
- M. Kamionkowski, A. Kosowsky, and M. S. Turner, “Gravitational radiation from first order phase transitions,” Phys. Rev. D 49 (1994) 2837–2851, arXiv:astro-ph/9310044.
- A. Kosowsky, A. Mack, and T. Kahniashvili, “Gravitational radiation from cosmological turbulence,” Phys. Rev. D 66 (2002) 024030, arXiv:astro-ph/0111483.
- R. Apreda, M. Maggiore, A. Nicolis, and A. Riotto, “Gravitational waves from electroweak phase transitions,” Nucl. Phys. B 631 (2002) 342–368, arXiv:gr-qc/0107033.
- A. Nicolis, “Relic gravitational waves from colliding bubbles and cosmic turbulence,” Class. Quant. Grav. 21 (2004) L27, arXiv:gr-qc/0303084.
- C. Grojean and G. Servant, “Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond,” Phys. Rev. D 75 (2007) 043507, arXiv:hep-ph/0607107.
- S. J. Huber and T. Konstandin, “Gravitational Wave Production by Collisions: More Bubbles,” JCAP 09 (2008) 022, arXiv:0806.1828 [hep-ph].
- T. Kahniashvili, A. Kosowsky, G. Gogoberidze, and Y. Maravin, “Detectability of Gravitational Waves from Phase Transitions,” Phys. Rev. D 78 (2008) 043003, arXiv:0806.0293 [astro-ph].
- T. Kahniashvili, L. Kisslinger, and T. Stevens, “Gravitational Radiation Generated by Magnetic Fields in Cosmological Phase Transitions,” Phys. Rev. D 81 (2010) 023004, arXiv:0905.0643 [astro-ph.CO].
- C. Caprini, R. Durrer, T. Konstandin, and G. Servant, “General Properties of the Gravitational Wave Spectrum from Phase Transitions,” Phys. Rev. D 79 (2009) 083519, arXiv:0901.1661 [astro-ph.CO].
- J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant, “Energy Budget of Cosmological First-order Phase Transitions,” JCAP 06 (2010) 028, arXiv:1004.4187 [hep-ph].
- M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Gravitational waves from the sound of a first order phase transition,” Phys. Rev. Lett. 112 (2014) 041301, arXiv:1304.2433 [hep-ph].
- C. Caprini et al., “Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions,” JCAP 04 (2016) 001, arXiv:1512.06239 [astro-ph.CO].
- C. Caprini, “Stochastic background of gravitational waves from cosmological sources,” J. Phys. Conf. Ser. 610 no. 1, (2015) 012004, arXiv:1501.01174 [gr-qc].
- L. Kisslinger and T. Kahniashvili, “Polarized Gravitational Waves from Cosmological Phase Transitions,” Phys. Rev. D 92 no. 4, (2015) 043006, arXiv:1505.03680 [astro-ph.CO].
- M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Numerical simulations of acoustically generated gravitational waves at a first order phase transition,” Phys. Rev. D 92 no. 12, (2015) 123009, arXiv:1504.03291 [astro-ph.CO].
- P. Schwaller, “Gravitational Waves from a Dark Phase Transition,” Phys. Rev. Lett. 115 no. 18, (2015) 181101, arXiv:1504.07263 [hep-ph].
- P. S. B. Dev and A. Mazumdar, “Probing the Scale of New Physics by Advanced LIGO/VIRGO,” Phys. Rev. D 93 no. 10, (2016) 104001, arXiv:1602.04203 [hep-ph].
- R. Jinno and M. Takimoto, “Gravitational waves from bubble dynamics: Beyond the Envelope,” JCAP 01 (2019) 060, arXiv:1707.03111 [hep-ph].
- M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Shape of the acoustic gravitational wave power spectrum from a first order phase transition,” Phys. Rev. D 96 no. 10, (2017) 103520, arXiv:1704.05871 [astro-ph.CO]. [Erratum: Phys.Rev.D 101, 089902 (2020)].
- D. J. Weir, “Gravitational waves from a first order electroweak phase transition: a brief review,” Phil. Trans. Roy. Soc. Lond. A 376 no. 2114, (2018) 20170126, arXiv:1705.01783 [hep-ph]. [Erratum: Phil.Trans.Roy.Soc.Lond.A 381, 20230212 (2023)].
- V. Brdar, A. J. Helmboldt, and J. Kubo, “Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales,” JCAP 02 (2019) 021, arXiv:1810.12306 [hep-ph].
- C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35 no. 16, (2018) 163001, arXiv:1801.04268 [astro-ph.CO].
- A. Mazumdar and G. White, “Review of cosmic phase transitions: their significance and experimental signatures,” Rept. Prog. Phys. 82 no. 7, (2019) 076901, arXiv:1811.01948 [hep-ph].
- D. Cutting, M. Hindmarsh, and D. J. Weir, “Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice,” Phys. Rev. D 97 no. 12, (2018) 123513, arXiv:1802.05712 [astro-ph.CO].
- M. Geller, A. Hook, R. Sundrum, and Y. Tsai, “Primordial Anisotropies in the Gravitational Wave Background from Cosmological Phase Transitions,” Phys. Rev. Lett. 121 no. 20, (2018) 201303, arXiv:1803.10780 [hep-ph].
- T. Alanne, T. Hugle, M. Platscher, and K. Schmitz, “A fresh look at the gravitational-wave signal from cosmological phase transitions,” JHEP 03 (2020) 004, arXiv:1909.11356 [hep-ph].
- M. Hindmarsh and M. Hijazi, “Gravitational waves from first order cosmological phase transitions in the Sound Shell Model,” JCAP 12 (2019) 062, arXiv:1909.10040 [astro-ph.CO].
- K. Schmitz, “New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions,” JHEP 01 (2021) 097, arXiv:2002.04615 [hep-ph].
- M. B. Hindmarsh, M. Lüben, J. Lumma, and M. Pauly, “Phase transitions in the early universe,” SciPost Phys. Lect. Notes 24 (2021) 1, arXiv:2008.09136 [astro-ph.CO].
- J. Ellis, M. Lewicki, and J. M. No, “Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source,” JCAP 07 (2020) 050, arXiv:2003.07360 [hep-ph].
- D. Cutting, E. G. Escartin, M. Hindmarsh, and D. J. Weir, “Gravitational waves from vacuum first order phase transitions II: from thin to thick walls,” Phys. Rev. D 103 no. 2, (2021) 023531, arXiv:2005.13537 [astro-ph.CO].
- P. Athron, C. Balázs, A. Fowlie, L. Morris, and L. Wu, “Cosmological phase transitions: From perturbative particle physics to gravitational waves,” Prog. Part. Nucl. Phys. 135 (2024) 104094, arXiv:2305.02357 [hep-ph].
- C. Caprini, R. Jinno, T. Konstandin, A. Roper Pol, H. Rubira, and I. Stomberg, “Gravitational waves from decaying sources in strong phase transitions,” arXiv:2409.03651 [gr-qc].
- C. Caprini, R. Durrer, and G. Servant, “Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach,” Phys. Rev. D 77 (2008) 124015, arXiv:0711.2593 [astro-ph].
- R. Jinno and M. Takimoto, “Gravitational waves from bubble collisions: An analytic derivation,” Phys. Rev. D 95 no. 2, (2017) 024009, arXiv:1605.01403 [astro-ph.CO].
- G. Elor, R. Jinno, S. Kumar, R. McGehee, and Y. Tsai, “Finite Bubble Statistics Constrain Late Cosmological Phase Transitions,” arXiv:2311.16222 [hep-ph].
- J. Lesgourgues, “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview,” arXiv:1104.2932 [astro-ph.IM].
- D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” JCAP 07 (2011) 034, arXiv:1104.2933 [astro-ph.CO].
- V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory. World Scientific, Singapore, 2017.
- T. Kite, J. Chluba, A. Ravenni, and S. P. Patil, “Clarifying transfer function approximations for the large-scale gravitational wave background in ΛΛ\Lambdaroman_ΛCDM,” Mon. Not. Roy. Astron. Soc. 509 no. 1, (2021) 1366–1376, arXiv:2107.13351 [astro-ph.CO].
- S. W. Hawking, I. G. Moss, and J. M. Stewart, “Bubble Collisions in the Very Early Universe,” Phys. Rev. D 26 (1982) 2681.
- A. Kosowsky and M. S. Turner, “Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions,” Phys. Rev. D 47 (1993) 4372–4391, arXiv:astro-ph/9211004.
- M. Hindmarsh, “Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe,” Phys. Rev. Lett. 120 no. 7, (2018) 071301, arXiv:1608.04735 [astro-ph.CO].
- A. Roper Pol, S. Procacci, and C. Caprini, “Characterization of the gravitational wave spectrum from sound waves within the sound shell model,” Phys. Rev. D 109 no. 6, (2024) 063531, arXiv:2308.12943 [gr-qc].
- C. Caprini and R. Durrer, “Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields,” Phys. Rev. D 74 (2006) 063521, arXiv:astro-ph/0603476.
- T. Kahniashvili, L. Campanelli, G. Gogoberidze, Y. Maravin, and B. Ratra, “Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence,” Phys. Rev. D 78 (2008) 123006, arXiv:0809.1899 [astro-ph]. [Erratum: Phys.Rev.D 79, 109901 (2009)].
- C. Caprini, R. Durrer, and G. Servant, “The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition,” JCAP 12 (2009) 024, arXiv:0909.0622 [astro-ph.CO].
- P. Auclair, C. Caprini, D. Cutting, M. Hindmarsh, K. Rummukainen, D. A. Steer, and D. J. Weir, “Generation of gravitational waves from freely decaying turbulence,” JCAP 09 (2022) 029, arXiv:2205.02588 [astro-ph.CO].
- A. Hook, G. Marques-Tavares, and D. Racco, “Causal gravitational waves as a probe of free streaming particles and the expansion of the Universe,” JHEP 02 (2021) 117, arXiv:2010.03568 [hep-ph].
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- U. Seljak, “Gravitational lensing effect on cosmic microwave background anisotropies: A Power spectrum approach,” Astrophys. J. 463 (1996) 1, arXiv:astro-ph/9505109.
- F. Bernardeau, “Weak lensing detection in CMB maps,” Astron. Astrophys. 324 (1997) 15–26, arXiv:astro-ph/9611012.
- M. Zaldarriaga and U. Seljak, “Gravitational lensing effect on cosmic microwave background polarization,” Phys. Rev. D 58 (1998) 023003, arXiv:astro-ph/9803150.
- W. Hu and T. Okamoto, “Mass reconstruction with cmb polarization,” Astrophys. J. 574 (2002) 566–574, arXiv:astro-ph/0111606.
- W. Hu, “Dark synergy: Gravitational lensing and the CMB,” Phys. Rev. D 65 (2002) 023003, arXiv:astro-ph/0108090.
- W. Hu, M. M. Hedman, and M. Zaldarriaga, “Benchmark parameters for CMB polarization experiments,” Phys. Rev. D 67 (2003) 043004, arXiv:astro-ph/0210096.
- U. Seljak and C. M. Hirata, “Gravitational lensing as a contaminant of the gravity wave signal in CMB,” Phys. Rev. D 69 (2004) 043005, arXiv:astro-ph/0310163.
- A. Lewis and A. Challinor, “Weak gravitational lensing of the CMB,” Phys. Rept. 429 (2006) 1–65, arXiv:astro-ph/0601594.
- D. Hanson, A. Challinor, and A. Lewis, “Weak lensing of the CMB,” Gen. Rel. Grav. 42 (2010) 2197–2218, arXiv:0911.0612 [astro-ph.CO].
- S. Dodelson, “Cross-Correlating Probes of Primordial Gravitational Waves,” Phys. Rev. D 82 (2010) 023522, arXiv:1001.5012 [astro-ph.CO].
- S. C. Hotinli, J. Meyers, C. Trendafilova, D. Green, and A. van Engelen, “The benefits of CMB delensing,” JCAP 04 no. 04, (2022) 020, arXiv:2111.15036 [astro-ph.CO].
- C. Trendafilova, S. C. Hotinli, and J. Meyers, “Improving constraints on inflation with CMB delensing,” JCAP 06 (2024) 017, arXiv:2312.02954 [astro-ph.CO].
- S. Bird, H. V. Peiris, M. Viel, and L. Verde, “Minimally parametric power spectrum reconstruction from the Lyman α𝛼\alphaitalic_α forest,” MNRAS 413 no. 3, (May, 2011) 1717–1728, arXiv:1010.1519 [astro-ph.CO].
- Planck Collaboration, Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys. 641 (2020) A10, arXiv:1807.06211 [astro-ph.CO].
- D. J. Fixsen and J. C. Mather, “The spectral results of the far-infrared absolute spectrophotometer instrument on cobe,” The Astrophysical Journal 581 no. 2, (Dec, 2002) 817. https://dx.doi.org/10.1086/344402.
- J. Chluba, R. Khatri, and R. A. Sunyaev, “CMB at 2x2 order: The dissipation of primordial acoustic waves and the observable part of the associated energy release,” Mon. Not. Roy. Astron. Soc. 425 (2012) 1129–1169, arXiv:1202.0057 [astro-ph.CO].
- LiteBIRD Collaboration, E. Allys et al., “Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey,” PTEP 2023 no. 4, (2023) 042F01, arXiv:2202.02773 [astro-ph.IM].
- CMB-S4 Collaboration, K. N. Abazajian et al., “CMB-S4 Science Book, First Edition,” arXiv:1610.02743 [astro-ph.CO].
- P. D. Lasky et al., “Gravitational-wave cosmology across 29 decades in frequency,” Phys. Rev. X 6 no. 1, (2016) 011035, arXiv:1511.05994 [astro-ph.CO].
- BICEP, Keck Collaboration, P. A. R. Ade et al., “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127 no. 15, (2021) 151301, arXiv:2110.00483 [astro-ph.CO].
- LISA Collaboration, P. Amaro-Seoane et al., “Laser Interferometer Space Antenna,” arXiv:1702.00786 [astro-ph.IM].
- G. Janssen et al., “Gravitational wave astronomy with the SKA,” PoS AASKA14 (2015) 037, arXiv:1501.00127 [astro-ph.IM].
- A. Kogut et al., “The Primordial Inflation Explorer (PIXIE): Mission Design and Science Goals,” arXiv:2405.20403 [astro-ph.CO].
- A. Sabyr, C. Sierra, J. C. Hill, and J. J. McMahon, “SPECTER: An Instrument Concept for CMB Spectral Distortion Measurements with Enhanced Sensitivity,” arXiv:2409.12188 [astro-ph.CO].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.