Two-particle calculations with quantics tensor trains: Solving the parquet equations (2410.22975v3)
Abstract: We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equations, parquet equation and Schwinger--Dyson equation) can be decomposed into basic operations on the QTT-TCI (QTCI) compressed objects. The repeated application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative scheme converges even for numerically demanding parameters. As examples we take the Hubbard model in the atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an exponential increase of the number of grid points included in the calculations leading to an exponentially improving computational error for a linear increase in computational cost.
- G. Rohringer, A. Valli, and A. Toschi, Local electronic correlation at the two-particle level, Phys. Rev. B 86, 125114 (2012).
- S.-S. B. Lee, F. B. Kugler, and J. von Delft, Computing local multipoint correlators using the numerical renormalization group, Phys. Rev. X 11, 041007 (2021).
- F. Krien and A. Kauch, The plain and simple parquet approximation: single-and multi-boson exchange in the two-dimensional hubbard model, Europ. Phys. J. B 95, 69 (2022).
- C. De Dominicis and P. C. Martin, Stationary entropy principle and renormalization in normal and superfluid systems. i. algebraic formulation, Journal of Mathematical Physics 5, 14 (1964a).
- C. De Dominicis and P. C. Martin, Stationary entropy principle and renormalization in normal and superfluid systems. ii. diagrammatic formulation, Journal of Mathematical Physics 5, 31 (1964b).
- G. V. Astretsov, G. Rohringer, and A. N. Rubtsov, Dual parquet scheme for the two-dimensional hubbard model: Modeling low-energy physics of high-Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT cuprates with high momentum resolution, Phys. Rev. B 101, 075109 (2020).
- F. Krien, A. Kauch, and K. Held, Tiling with triangles: parquet and gwγ𝑔𝑤𝛾gw\gammaitalic_g italic_w italic_γ methods unified, Phys. Rev. Research 3, 013149 (2021).
- M. Wallerberger, H. Shinaoka, and A. Kauch, Solving the bethe-salpeter equation with exponential convergence, Physical Review Research 3, 10.1103/physrevresearch.3.033168 (2021).
- I. V. Oseledets, Approximation of matrices with logarithmic number of parameters, Doklady Mathematics 80, 653 (2009).
- B. N. Khoromskij, O(dlogN)𝑂𝑑𝑁O(d\log N)italic_O ( italic_d roman_log italic_N )-quantics approximation of N𝑁Nitalic_N-d𝑑ditalic_d tensors in high-dimensional numerical modeling, Constructive Approximation 34, 257 (2011).
- S. Dolgov, B. Khoromskij, and D. Savostyanov, Superfast fourier transform using qtt approximation, Journal of Fourier Analysis and Applications 18, 915 (2012).
- E. Ye and N. F. G. Loureiro, Quantum-inspired method for solving the vlasov-poisson equations, Phys. Rev. E 106, 035208 (2022).
- M. Murray, H. Shinaoka, and P. Werner, Nonequilibrium diagrammatic many-body simulations with quantics tensor trains, Phys. Rev. B 109, 165135 (2024).
- H. Takahashi, R. Sakurai, and H. Shinaoka, Compactness of quantics tensor train representations of local imaginary-time propagators (2024), arXiv:2403.09161 [cond-mat.str-el] .
- M. Eckstein, Solving quantum impurity models in the non-equilibrium steady state with tensor trains (2024), arXiv:2410.19707 [cond-mat.str-el] .
- A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism (Cambridge University Press, 1993).
- I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33, 2295 (2011).
- F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 .
- E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms, New Journal of Physics 12, 055026.
- E. Kozik, M. Ferrero, and A. Georges, Nonexistence of the luttinger-ward functional and misleading convergence of skeleton diagrammatic series for hubbard-like models, Physical Review Letters 114, 10.1103/physrevlett.114.156402 (2015).
- F. Schrodi, P. M. Oppeneer, and A. Aperis, Full-bandwidth eliashberg theory of superconductivity beyond migdal’s approximation, Phys. Rev. B 102, 024503 (2020).
- A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Books on Chemistry (Dover Publications, 1996).
- B. I. Dunlap, Robust and variational fitting, Phys. Chem. Chem. Phys. 2, 2113 (2000).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.