Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Two-particle calculations with quantics tensor trains: Solving the parquet equations (2410.22975v3)

Published 30 Oct 2024 in cond-mat.str-el

Abstract: We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equations, parquet equation and Schwinger--Dyson equation) can be decomposed into basic operations on the QTT-TCI (QTCI) compressed objects. The repeated application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative scheme converges even for numerically demanding parameters. As examples we take the Hubbard model in the atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an exponential increase of the number of grid points included in the calculations leading to an exponentially improving computational error for a linear increase in computational cost.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. G. Rohringer, A. Valli, and A. Toschi, Local electronic correlation at the two-particle level, Phys. Rev. B 86, 125114 (2012).
  2. S.-S. B. Lee, F. B. Kugler, and J. von Delft, Computing local multipoint correlators using the numerical renormalization group, Phys. Rev. X 11, 041007 (2021).
  3. F. Krien and A. Kauch, The plain and simple parquet approximation: single-and multi-boson exchange in the two-dimensional hubbard model, Europ. Phys. J. B 95, 69 (2022).
  4. C. De Dominicis and P. C. Martin, Stationary entropy principle and renormalization in normal and superfluid systems. i. algebraic formulation, Journal of Mathematical Physics 5, 14 (1964a).
  5. C. De Dominicis and P. C. Martin, Stationary entropy principle and renormalization in normal and superfluid systems. ii. diagrammatic formulation, Journal of Mathematical Physics 5, 31 (1964b).
  6. G. V. Astretsov, G. Rohringer, and A. N. Rubtsov, Dual parquet scheme for the two-dimensional hubbard model: Modeling low-energy physics of high-Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT cuprates with high momentum resolution, Phys. Rev. B 101, 075109 (2020).
  7. F. Krien, A. Kauch, and K. Held, Tiling with triangles: parquet and g⁢w⁢γ𝑔𝑤𝛾gw\gammaitalic_g italic_w italic_γ methods unified, Phys. Rev. Research 3, 013149 (2021).
  8. M. Wallerberger, H. Shinaoka, and A. Kauch, Solving the bethe-salpeter equation with exponential convergence, Physical Review Research 3, 10.1103/physrevresearch.3.033168 (2021).
  9. I. V. Oseledets, Approximation of matrices with logarithmic number of parameters, Doklady Mathematics 80, 653 (2009).
  10. B. N. Khoromskij, O⁢(d⁢log⁡N)𝑂𝑑𝑁O(d\log N)italic_O ( italic_d roman_log italic_N )-quantics approximation of N𝑁Nitalic_N-d𝑑ditalic_d tensors in high-dimensional numerical modeling, Constructive Approximation 34, 257 (2011).
  11. S. Dolgov, B. Khoromskij, and D. Savostyanov, Superfast fourier transform using qtt approximation, Journal of Fourier Analysis and Applications 18, 915 (2012).
  12. E. Ye and N. F. G. Loureiro, Quantum-inspired method for solving the vlasov-poisson equations, Phys. Rev. E 106, 035208 (2022).
  13. M. Murray, H. Shinaoka, and P. Werner, Nonequilibrium diagrammatic many-body simulations with quantics tensor trains, Phys. Rev. B 109, 165135 (2024).
  14. H. Takahashi, R. Sakurai, and H. Shinaoka, Compactness of quantics tensor train representations of local imaginary-time propagators (2024), arXiv:2403.09161 [cond-mat.str-el] .
  15. M. Eckstein, Solving quantum impurity models in the non-equilibrium steady state with tensor trains (2024), arXiv:2410.19707 [cond-mat.str-el] .
  16. A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism (Cambridge University Press, 1993).
  17. I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33, 2295 (2011).
  18. F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions,  cond-mat/0407066 .
  19. E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms, New Journal of Physics 12, 055026.
  20. E. Kozik, M. Ferrero, and A. Georges, Nonexistence of the luttinger-ward functional and misleading convergence of skeleton diagrammatic series for hubbard-like models, Physical Review Letters 114, 10.1103/physrevlett.114.156402 (2015).
  21. F. Schrodi, P. M. Oppeneer, and A. Aperis, Full-bandwidth eliashberg theory of superconductivity beyond migdal’s approximation, Phys. Rev. B 102, 024503 (2020).
  22. A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Books on Chemistry (Dover Publications, 1996).
  23. B. I. Dunlap, Robust and variational fitting, Phys. Chem. Chem. Phys. 2, 2113 (2000).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube