Noise-induced synchronization in coupled quantum oscillators (2410.22495v3)
Abstract: We consider the quantum dynamics of a pair of coupled quantum oscillators coupled to a common correlated dissipative environment. The resulting equations of motion for both the operator moments and covariances can be integrated analytically using the Lyapunov equations. We find that for fully correlated and fully anti-correlated environments, the oscillators relax into a phase-synchronized state that persists for long times when the two oscillators are nearly resonant and (essentially) forever if the two oscillators are in resonance. This can be traced to the symmetry of the Lindblad dissipator, which can lead to strong damping in one region of state space and under damping in others. In the extreme cases of fully correlated or fully anti-correlated environments, specific regions of state space are fully decoupled from the environment. We also show that the environmental noise correlation leads to quantum entanglement, and all the correlations between the two oscillators are purely quantum mechanical in origin. This work provides a robust mathematical foundation for understanding how long-lived exciton coherences can be linked to vibronic correlation effects.
- C. Huygens, “Instructions concerning the use of pendulum-watches, for finding the longitude at sea,” Philosophical Transactions of the Royal Society of London 4, 937–953 (1669).
- C. Huygens, Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometricae (Apud F. Muguet, 1673).
- J. Ellicott, “Vi. Further observations and experiments concerning the two clocks above-mentioned, by the same,” Philosophical Transactions of the Royal Society of London 41, 128–135 (1739a), https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1739.0015 .
- J. Ellicott, “V. An account of the influence which two pendulum clocks were observed to have upon each other,” Philosophical Transactions of the Royal Society of London 41, 126–128 (1739b), https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1739.0014 .
- S. G. B. Airy, “On the disturbances of pendulums and balances and on the theory of escapements,” (Cambridge Philosophical Society, 1830).
- I. Newton, Philosophiae naturalis principia mathematica, Vol. 1 (G. Brookman, 1833).
- D. Korteweg, “Les horloges sympathiques de huygens,” Archives Neerlandaises, Serie II 11, 273–295 (1906).
- C. Huygens, Oeuvres complètes de Christiaan Huygens, Vol. 13 (M. Nijhoff, 1916).
- S. H. Strogatz and I. Stewart, “Coupled oscillators and biological synchronization,” Scientific american 269, 102–109 (1993).
- A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization,” Cambridge university press 12 (2001).
- M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, “Huygens’s clocks,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, 563–579 (2002), https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2001.0888 .
- I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, and P. Hänggi, “Quantum stochastic synchronization,” Phys. Rev. Lett. 97, 210601 (2006).
- H. M. Oliveira and L. V. Melo, “Huygens synchronization of two clocks,” Scientific Reports 5, 11548 (2015).
- J. Peña Ramirez, L. A. Olvera, H. Nijmeijer, and J. Alvarez, “The sympathy of two pendulum clocks: beyond huygens’ observations,” Scientific reports 6, 23580 (2016).
- G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).
- G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proceedings of the National Academy of Sciences 107, 12766–12770 (2010).
- A. Chenu and G. D. Scholes, “Coherence in energy transfer and photosynthesis,” Annual review of physical chemistry 66, 69–96 (2015).
- G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. Van Grondelle, A. Ishizaki, D. M. Jonas, et al., “Using coherence to enhance function in chemical and biophysical systems,” Nature 543, 647–656 (2017).
- R. Zhu, W. Li, Z. Zhen, J. Zou, G. Liao, J. Wang, Z. Wang, H. Chen, S. Qin, and Y. Weng, “Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas,” Nature Communications 15, 3171 (2024).
- M. Du, M. Qin, H. Cui, C. Wang, Y. Xu, X. Ma, and X. Yi, “Role of spatially correlated fluctuations in photosynthetic excitation energy transfer with an equilibrium and a nonequilibrium initial bath,” The Journal of Physical Chemistry B 125, 6417–6430 (2021).
- E. R. Bittner, H. Li, S. A. Shah, C. Silva-Acuña, and A. Piryatinski, “Correlated noise enhancement of coherence and fidelity in coupled qubits,” Phil. Mag., part C 104, 630–646 (2024).
- B. Tyagi, H. Li, E. R. Bittner, A. Piryatinski, and C. Silva-Acuña, “Noise-induced quantum synchronization and entanglement in a quantum analogue of Huygens’ clock,” The Journal of Physical Chemistry Letters , 10896–10902 (2024).
- We note that our analysis was done within Mathematica (v14.x) by defining a series bosonic algebra rules to generate and simplify the rather cumbersome expressions for multi-component boson systems. Included in this is a similar set of rules and transformations useful for multi-components spin systems. We include a link to a notebook with our derivations in the Data Availability section.
- P. C. PARKS, “ A. M. Lyapunov’s stability theory—100 years on *,” IMA Journal of Mathematical Control and Information 9, 275–303 (1992), https://academic.oup.com/imamci/article-pdf/9/4/275/6767220/9-4-275.pdf .
- C. W. Wächtler, V. M. Bastidas, G. Schaller, and W. J. Munro, “Dissipative nonequilibrium synchronization of topological edge states via self-oscillation,” Phys. Rev. B 102, 014309 (2020).
- C. W. Wächtler and G. Platero, “Topological synchronization of quantum van der Pol oscillators,” Phys. Rev. Res. 5, 023021 (2023).
- C. W. Wächtler and J. E. Moore, “Topological quantum synchronization of fractionalized spins,” Phys. Rev. Lett. 132, 196601 (2024).
- J. N. Moreno, C. W. Wächtler, and A. Eisfeld, “Synchronized states in dissipatively coupled harmonic oscillator networks,” (2023), arXiv:2301.13614 [nlin.CD] .
- W. Research, “LyapunovSolve,” https://reference.wolfram.com/language/ref/LyapunovSolve.html (2010).
- J. Williamson, “On the algebraic problem concerning the normal forms of linear dynamical systems,” American journal of mathematics 58, 141–163 (1936).
- G. Adesso, D. Girolami, and A. Serafini, “Measuring gaussian quantum information and correlations using the Rényi entropy of order 2,” Phys. Rev. Lett. 109, 190502 (2012).
- G. Adesso and A. Datta, “Quantum versus classical correlations in gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
- H. Ollivier and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.