Metalens formed by structured arrays of atomic emitters (2410.22469v1)
Abstract: Arrays of atomic emitters have proven to be a promising platform to manipulate and engineer optical properties, due to their efficient cooperative response to near-resonant light. Here, we theoretically investigate their use as an efficient metalens. We show that, by spatially tailoring the (sub-wavelength) lattice constants of three consecutive two-dimensional arrays of identical atomic emitters, one can realize a large transmission coefficient with arbitrary position-dependent phase shift, whose robustness against losses is enhanced by the collective response. To characterize the efficiency of this atomic metalens, we perform large-scale numerical simulations involving a substantial number of atoms ($N\sim 5\times 105$) that is considerably larger than comparable works. Our results suggest that low-loss, robust optical devices with complex functionalities, ranging from metasurfaces to computer-generated holograms, could be potentially assembled from properly engineered arrays of atomic emitters.
- M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission”, Physics Reports, vol. 93, pp. 301–396, 12/1982.
- A. S. Sheremet et al., “Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations”, Reviews of Modern Physics, vol. 95, p. 015002, 3/2023.
- S. D. Jenkins and J. Ruostekoski, “Controlled manipulation of light by cooperative response of atoms in an optical lattice”, Physical Review A, vol. 86, p. 031602, 9/2012.
- G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing Light with Subradiant Correlations in Arrays of Atoms”, Physical Review Letters, vol. 117, p. 243601, 12/2016.
- A. Asenjo-Garcia et al., “Exponential Improvement in Photon Storage Fidelities Using Subradiance and ”Selective Radiance” in Atomic Arrays”, Physical Review X, vol. 7, p. 31024, 8/2017.
- J. Perczel et al., “Photonic band structure of two-dimensional atomic lattices”, Physical Review A, vol. 96, p. 063801, 12/2017.
- M. T. Manzoni et al., “Optimization of photon storage fidelity in ordered atomic arrays”, New Journal of Physics, vol. 20, p. 83048, 8/2018.
- P. O. Guimond et al., “Subradiant Bell States in Distant Atomic Arrays”, Physical Review Letters, vol. 122, p. 093601, 3/2019.
- R. J. Bettles et al., “Quantum and nonlinear effects in light transmitted through planar atomic arrays”, Communications Physics, vol. 3, pp. 1–9, 8/2020.
- K. Brechtelsbauer and D. Malz, “Quantum simulation with fully coherent dipole-dipole interactions mediated by three-dimensional subwavelength atomic arrays”, Physical Review A, vol. 104, p. 013701, 7/2021.
- Z. Y. Wei et al., “Generation of photonic matrix product states with Rydberg atomic arrays”, Physical Review Research, vol. 3, p. 023021, 4/2021.
- C. C. Rusconi, T. Shi, and J. I. Cirac, “Exploiting the photonic nonlinearity of free-space subwavelength arrays of atoms”, Physical Review A, vol. 104, p. 033718, 9/2021.
- T. L. Patti et al., “Controlling Interactions between Quantum Emitters Using Atom Arrays”, Physical Review Letters, vol. 126, p. 223602, 6/2021.
- E. Sierra, S. J. Masson, and A. Asenjo-Garcia, “Dicke Superradiance in Ordered Lattices: Dimensionality Matters”, Physical Review Research, vol. 4, p. 023207, 6/2022.
- S. J. Masson and A. Asenjo-Garcia, “Universality of Dicke superradiance in arrays of quantum emitters”, Nature Communications, vol. 13, pp. 1–7, 4/2022.
- F. Andreoli et al., “The maximum refractive index of an atomic crystal - from quantum optics to quantum chemistry”, arXiv:2303.10998, 3/2023.
- Y. Solomons, R. Ben-Maimon, and E. Shahmoon, “Universal approach for quantum interfaces with atomic arrays”, arXiv:2302.04913, 2/2023.
- M. Moreno-Cardoner, D. Goncalves, and D. Chang, “Quantum Nonlinear Optics Based on Two-Dimensional Rydberg Atom Arrays”, Physical Review Letters, vol. 127, p. 263602, 12/2021.
- O. Rubies-Bigorda et al., “Photon control and coherent interactions via lattice dark states in atomic arrays”, Physical Review Research, vol. 4, p. 013110, 3/2022.
- K. E. Ballantine and J. Ruostekoski, “Subradiance-protected excitation spreading in the generation of collimated photon emission from an atomic array”, Physical Review Research, vol. 2, p. 023086, 4/2020.
- K. E. Ballantine and J. Ruostekoski, “Quantum Single-Photon Control, Storage, and Entanglement Generation with Planar Atomic Arrays”, PRX Quantum, vol. 2, p. 040362, 12/2021.
- J. Ruostekoski, “Cooperative quantum-optical planar arrays of atoms”, Physical Review A, vol. 108, p. 030101, 9/2023.
- R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array”, Physical Review Letters, vol. 116, p. 103602, 3/2016.
- E. Shahmoon et al., “Cooperative Resonances in Light Scattering from Two-Dimensional Atomic Arrays”, Physical Review Letters, vol. 118, p. 113601, 3/2017.
- J. Rui et al., “A subradiant optical mirror formed by a single structured atomic layer”, Nature, vol. 583, pp. 369–374, 7/2020.
- N. Nefedkin, M. Cotrufo, and A. Alù, “Nonreciprocal total cross section of quantum metasurfaces”, Nanophotonics, vol. 0, 1/2023.
- R. Alaee et al., “Quantum Metamaterials with Magnetic Response at Optical Frequencies”, Physical Review Letters, vol. 125, p. 063601, 8/2020.
- K. E. Ballantine and J. Ruostekoski, “Optical Magnetism and Huygens’ Surfaces in Arrays of Atoms Induced by Cooperative Responses”, Physical Review Letters, vol. 125, p. 143604, 10/2020.
- K. E. Ballantine, D. Wilkowski, and J. Ruostekoski, “Optical magnetism and wavefront control by arrays of strontium atoms”, Physical Review Research, vol. 4, p. 033242, 7/2022.
- K. E. Ballantine and J. Ruostekoski, “Cooperative optical wavefront engineering with atomic arrays”, Nanophotonics, vol. 10, pp. 1901–1909, 5/2021.
- B. X. Wang et al., “Design of metasurface polarizers based on two-dimensional cold atomic arrays”, Optics Express, vol. 25, pp. 18760–18773, 8/2017.
- N. S. Baßler et al., “Linear optical elements based on cooperative subwavelength emitter arrays”, Optics Express, vol. 31, pp. 6003–6026, 2/2023.
- N. S. Baßler et al., “Metasurface-Based Hybrid Optical Cavities for Chiral Sensing”, Physical Review Letters, vol. 132, p. 043602, 1/2024.
- J. Engelberg and U. Levy, “The advantages of metalenses over diffractive lenses”, Nature Communications, vol. 11, 12/2020.
- W. T. Chen, A. Y. Zhu, and F. Capasso, “Flat optics with dispersion-engineered metasurfaces”, Nature Reviews Materials, vol. 5, pp. 604–620, 8/2020.
- Z. Li et al., “Atomic optical antennas in solids”, Nature Photonics, vol. 18, pp. 1113–1120, 6/2024.
- M. Zhou et al., “Optical Metasurface Based on the Resonant Scattering in Electronic Transitions”, ACS Photonics, vol. 4, pp. 1279–1285, 5/2017.
- L. Chomaz et al., “Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis”, New Journal of Physics, vol. 14, p. 055001, 5/2012.
- J. Javanainen et al., “Shifts of a resonance line in a dense atomic sample”, Physical Review Letters, vol. 112, 3/2014.
- J. Javanainen and J. Ruostekoski, “Light propagation beyond the mean-field theory of standard optics”, Optics Express, vol. 24, p. 993, 1/2016.
- B. Zhu et al., “Light scattering from dense cold atomic media”, Physical Review A, vol. 94, p. 023612, 8/2016.
- N. J. Schilder et al., “Polaritonic modes in a dense cloud of cold atoms”, Physical Review A, vol. 93, p. 063835, 6/2016.
- N. J. Schilder et al., “Homogenization of an ensemble of interacting resonant scatterers”, Physical Review A, vol. 96, p. 013825, 7/2017.
- N. Schilder et al., “Near-Resonant Light Scattering by a Subwavelength Ensemble of Identical Atoms”, Physical Review Letters, vol. 124, p. 073403, 2/2020.
- S. Jennewein et al., “Propagation of light through small clouds of cold interacting atoms”, Physical Review A, vol. 94, no. 5, 2016.
- S. Jennewein et al., “Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory”, Physical Review A, vol. 97, 5/2018.
- L. Corman et al., “Transmission of near-resonant light through a dense slab of cold atoms”, Physical Review A, vol. 96, p. 53629, 11/2017.
- S. D. Jenkins et al., “Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment”, Physical Review A, vol. 94, p. 023842, 8/2016.
- H. Dobbertin, R. Löw, and S. Scheel, “Collective dipole-dipole interactions in planar nanocavities”, Physical Review A, vol. 102, p. 031701, 9/2020.
- D. Fattal et al., “Flat dielectric grating reflectors with focusing abilities”, Nature Photonics, vol. 4, pp. 466–470, 7/2010.
- A. B. Klemm et al., “Experimental high numerical aperture focusing with high contrast gratings”, Optics Letters, vol. 38, p. 3410, 9/2013.
- M. Khorasaninejad et al., “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging”, Science, vol. 352, pp. 1190–1194, 6/2016.
- Z. Zhou et al., “Efficient Silicon Metasurfaces for Visible Light”, ACS Photonics, vol. 4, pp. 544–551, 3/2017.
- H. Liang et al., “Ultrahigh Numerical Aperture Metalens at Visible Wavelengths”, Nano Letters, vol. 18, pp. 4460–4466, 7/2018.
- A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces”, Science, vol. 339, pp. 12320091–12320096, 3/2013.
- N. Yu and F. Capasso, “Flat optics with designer metasurfaces”, Nature Materials, vol. 13, pp. 139–150, 1/2014.
- W. T. Chen and F. Capasso, “Will flat optics appear in everyday life anytime soon?”, Applied Physics Letters, vol. 118, p. 100503, 3/2021.
- S. Shrestha et al., “Broadband achromatic dielectric metalenses”, Light: Science and Applications, vol. 7, 12/2018.
- C. Bradac et al., “Quantum nanophotonics with group IV defects in diamond”, Nature Communications, vol. 10, pp. 1–13, 12/2019.
- V. M. Acosta et al., “Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications”, Physical Review B, vol. 80, 9/2009.
- C. Hepp et al., “Electronic structure of the silicon vacancy color center in diamond”, Physical Review Letters, vol. 112, p. 036405, 1/2014.
- T. Müller et al., “Optical signatures of silicon-vacancy spins in diamond”, Nature Communications, vol. 5, pp. 1–7, 2/2014.
- T. Iwasaki et al., “Tin-Vacancy Quantum Emitters in Diamond”, Physical Review Letters, vol. 119, p. 253601, 12/2017.
- M. E. Trusheim et al., “Lead-related quantum emitters in diamond”, Physical Review B, vol. 99, p. 075430, 2/2019.
- J. M. Smith et al., “Colour centre generation in diamond for quantum technologies”, Nanophotonics, vol. 8, pp. 1889–1906, 11/2019.
- K. Ohno et al., “Three-dimensional localization of spins in diamond using 12C implantation”, Applied Physics Letters, vol. 105, p. 52406, 8/2014.
- T. Y. Hwang et al., “Sub-10 nm Precision Engineering of Solid-State Defects via Nanoscale Aperture Array Mask”, Nano Letters, vol. 22, pp. 1672–1679, 2/2022.
- J. Michl et al., “Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces”, Applied Physics Letters, vol. 104, p. 102407, 3/2014.
- M. Lesik et al., “Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample”, Applied Physics Letters, vol. 104, p. 113107, 3/2014.
- T. Fukui et al., “Perfect selective alignment of nitrogen-vacancy centers in diamond”, Applied Physics Express, vol. 7, p. 055201, 4/2014.
- H. Ozawa et al., “Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111)”, Applied Physics Express, vol. 10, p. 045501, 4/2017.
- J. L. Pacheco et al., “Ion implantation for deterministic single atom devices”, Review of Scientific Instruments, vol. 88, 12/2017.
- Y.-C. Chen et al., “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield”, Optica, vol. 6, pp. 662–667, 5/2019.
- Y. Zhou et al., “Direct writing of single germanium vacancy center arrays in diamond”, New Journal of Physics, vol. 20, p. 125004, 12/2018.
- D. Scarabelli et al., “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond”, Nano Letters, vol. 16, pp. 4982–4990, 8/2016.
- C. J. Stephen et al., “Deep Three-Dimensional Solid-State Qubit Arrays with Long-Lived Spin Coherence”, Physical Review Applied, vol. 12, p. 064005, 12/2019.
- L. Novotny and N. Van Hulst, “Antennas for light”, Nature Photonics, vol. 5, pp. 83–90, 2/2011.
- F. Andreoli et al., “Maximum Refractive Index of an Atomic Medium”, Physical Review X, vol. 11, p. 011026, 2/2021.
- L. Novotny and B. Hecht, Principles of nano-optics. Cambridge University Press, 1/2009.
- M. Antezza and Y. Castin, “Spectrum of Light in a Quantum Fluctuating Periodic Structure”, Physical Review Letters, vol. 103, p. 123903, 9/2009.
- M. Antezza and Y. Castin, “Fano-Hopfield model and photonic band gaps for an arbitrary atomic lattice”, Physical Review A, vol. 80, p. 013816, 8/2009.
- C.-R. Mann et al., “Selective Radiance in Super-Wavelength Atomic Arrays”, arXiv:2402.06439, 2/2024.
- R. Ben-Maimon et al., “Quantum interfaces with multilayered superwavelength atomic arrays”, arXiv:2402.06839, 2/2024.
- S. P. Pedersen, L. Zhang, and T. Pohl, “Quantum nonlinear metasurfaces from dual arrays of ultracold atoms”, Physical Review Research, vol. 5, p. L012047, 1/2023.
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. John Wiley & Sons, Inc., 10/1991.
- H. Zheng and H. U. Baranger, “Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions”, Physical Review Letters, vol. 110, p. 113601, 3/2013.
- H. van de Stadt and J. M. Muller, “Multimirror Fabry–Perot interferometers”, JOSA A, vol. 2, p. 1363, 8/1985.
- I. H. Deutsch et al., “Photonic band gaps in optical lattices”, Physical Review A, vol. 52, pp. 1394–1410, 8/1995.
- R. Menon and B. Sensale-Rodriguez, “Inconsistencies of metalens performance and comparison with conventional diffractive optics”, Nature Photonics, vol. 17, pp. 923–924, 10/2023.
- J. Bezanson et al., “Julia: A fresh approach to numerical computing”, SIAM review, vol. 59, no. 1, pp. 65–98, 2017.
- R. E. Evans et al., “Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation”, Physical Review Applied, vol. 5, p. 044010, 4/2016.
- T. Schröder et al., “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures”, Nature Communications, vol. 8, pp. 1–7, 5/2017.
- M. Pan et al., “Dielectric metalens for miniaturized imaging systems: progress and challenges”, Light: Science & Applications, vol. 11, pp. 1–32, 6/2022.
- L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: From fundamentals to applications”, Nanophotonics, vol. 7, pp. 1169–1190, 6/2018.
- I. Volkov et al., “Non-radiative configurations of a few quantum emitters ensembles: Evolutionary optimization approach”, Applied Physics Letters, vol. 124, 2/2024.
- M. S. Bin-Alam et al., “Ultra-high-Q resonances in plasmonic metasurfaces”, Nature Communications, vol. 12, pp. 1–8, 2/2021.
- K. Shastri and F. Monticone, “Nonlocal flat optics”, Nature Photonics, vol. 17, pp. 36–47, 12/2022.
- C. Chen et al., “Spectral tomographic imaging with aplanatic metalens”, Light: Science & Applications, vol. 8, pp. 1–8, 11/2019.
- A. Arbabi et al., “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays”, Nature Communications, vol. 6, pp. 1–6, 5/2015.
- A. McClung et al., “Snapshot spectral imaging with parallel metasystems”, Science Advances, vol. 6, pp. 7646–7664, 9/2020.
- J. van de Groep et al., “Exciton resonance tuning of an atomically thin lens”, Nature Photonics, vol. 14, pp. 426–430, 4/2020.
- K. Ou et al., “Mid-infrared polarization-controlled broadband achromatic metadevice”, Science Advances, vol. 6, pp. 711–722, 9/2020.
- S. Gao et al., “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light”, Advanced Optical Materials, vol. 7, p. 1900883, 11/2019.
- J. Ma et al., “Engineering Quantum Light Sources with Flat Optics”, Advanced Materials, p. 2313589, 2024.
- A. S. Solntsev, G. S. Agarwal, and Y. Y. Kivshar, “Metasurfaces for quantum photonics”, Nature Photonics, vol. 15, pp. 327–336, 4/2021.
- J.-Z. Yang et al., “Quantum metasurface holography”, Photonics Research, vol. 10, pp. 2607–2613, 11/2022.
- Q. Y. Wu et al., “Quantum process tomography on holographic metasurfaces”, npj Quantum Information, vol. 8, pp. 1–6, 4/2022.
- L. J. Rogers et al., “Electronic structure of the negatively charged silicon-vacancy center in diamond”, Physical Review B, vol. 89, p. 235101, 6/2014.
- K. D. Jahnke et al., “Electron-phonon processes of the silicon-vacancy centre in diamond”, New Journal of Physics, vol. 17, p. 043011, 4/2015.
- D. D. Sukachev et al., “Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout”, Physical Review Letters, vol. 119, p. 223602, 11/2017.
- A. Sipahigil et al., “Indistinguishable photons from separated silicon-vacancy centers in diamond”, Physical Review Letters, vol. 113, p. 113602, 9/2014.
- L. J. Rogers et al., “Multiple intrinsically identical single-photon emitters in the solid state”, Nature Communications, vol. 5, 8/2014.
- P. Wang et al., “Transform-Limited Photon Emission from a Lead-Vacancy Center in Diamond above 10 K”, Physical Review Letters, vol. 132, p. 073601, 2/2024.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.