Papers
Topics
Authors
Recent
2000 character limit reached

Metalens formed by structured arrays of atomic emitters (2410.22469v1)

Published 29 Oct 2024 in quant-ph and physics.optics

Abstract: Arrays of atomic emitters have proven to be a promising platform to manipulate and engineer optical properties, due to their efficient cooperative response to near-resonant light. Here, we theoretically investigate their use as an efficient metalens. We show that, by spatially tailoring the (sub-wavelength) lattice constants of three consecutive two-dimensional arrays of identical atomic emitters, one can realize a large transmission coefficient with arbitrary position-dependent phase shift, whose robustness against losses is enhanced by the collective response. To characterize the efficiency of this atomic metalens, we perform large-scale numerical simulations involving a substantial number of atoms ($N\sim 5\times 105$) that is considerably larger than comparable works. Our results suggest that low-loss, robust optical devices with complex functionalities, ranging from metasurfaces to computer-generated holograms, could be potentially assembled from properly engineered arrays of atomic emitters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (113)
  1. M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission”, Physics Reports, vol. 93, pp. 301–396, 12/1982.
  2. A. S. Sheremet et al., “Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations”, Reviews of Modern Physics, vol. 95, p. 015002, 3/2023.
  3. S. D. Jenkins and J. Ruostekoski, “Controlled manipulation of light by cooperative response of atoms in an optical lattice”, Physical Review A, vol. 86, p. 031602, 9/2012.
  4. G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, “Storing Light with Subradiant Correlations in Arrays of Atoms”, Physical Review Letters, vol. 117, p. 243601, 12/2016.
  5. A. Asenjo-Garcia et al., “Exponential Improvement in Photon Storage Fidelities Using Subradiance and ”Selective Radiance” in Atomic Arrays”, Physical Review X, vol. 7, p. 31024, 8/2017.
  6. J. Perczel et al., “Photonic band structure of two-dimensional atomic lattices”, Physical Review A, vol. 96, p. 063801, 12/2017.
  7. M. T. Manzoni et al., “Optimization of photon storage fidelity in ordered atomic arrays”, New Journal of Physics, vol. 20, p. 83048, 8/2018.
  8. P. O. Guimond et al., “Subradiant Bell States in Distant Atomic Arrays”, Physical Review Letters, vol. 122, p. 093601, 3/2019.
  9. R. J. Bettles et al., “Quantum and nonlinear effects in light transmitted through planar atomic arrays”, Communications Physics, vol. 3, pp. 1–9, 8/2020.
  10. K. Brechtelsbauer and D. Malz, “Quantum simulation with fully coherent dipole-dipole interactions mediated by three-dimensional subwavelength atomic arrays”, Physical Review A, vol. 104, p. 013701, 7/2021.
  11. Z. Y. Wei et al., “Generation of photonic matrix product states with Rydberg atomic arrays”, Physical Review Research, vol. 3, p. 023021, 4/2021.
  12. C. C. Rusconi, T. Shi, and J. I. Cirac, “Exploiting the photonic nonlinearity of free-space subwavelength arrays of atoms”, Physical Review A, vol. 104, p. 033718, 9/2021.
  13. T. L. Patti et al., “Controlling Interactions between Quantum Emitters Using Atom Arrays”, Physical Review Letters, vol. 126, p. 223602, 6/2021.
  14. E. Sierra, S. J. Masson, and A. Asenjo-Garcia, “Dicke Superradiance in Ordered Lattices: Dimensionality Matters”, Physical Review Research, vol. 4, p. 023207, 6/2022.
  15. S. J. Masson and A. Asenjo-Garcia, “Universality of Dicke superradiance in arrays of quantum emitters”, Nature Communications, vol. 13, pp. 1–7, 4/2022.
  16. F. Andreoli et al., “The maximum refractive index of an atomic crystal - from quantum optics to quantum chemistry”, arXiv:2303.10998, 3/2023.
  17. Y. Solomons, R. Ben-Maimon, and E. Shahmoon, “Universal approach for quantum interfaces with atomic arrays”, arXiv:2302.04913, 2/2023.
  18. M. Moreno-Cardoner, D. Goncalves, and D. Chang, “Quantum Nonlinear Optics Based on Two-Dimensional Rydberg Atom Arrays”, Physical Review Letters, vol. 127, p. 263602, 12/2021.
  19. O. Rubies-Bigorda et al., “Photon control and coherent interactions via lattice dark states in atomic arrays”, Physical Review Research, vol. 4, p. 013110, 3/2022.
  20. K. E. Ballantine and J. Ruostekoski, “Subradiance-protected excitation spreading in the generation of collimated photon emission from an atomic array”, Physical Review Research, vol. 2, p. 023086, 4/2020.
  21. K. E. Ballantine and J. Ruostekoski, “Quantum Single-Photon Control, Storage, and Entanglement Generation with Planar Atomic Arrays”, PRX Quantum, vol. 2, p. 040362, 12/2021.
  22. J. Ruostekoski, “Cooperative quantum-optical planar arrays of atoms”, Physical Review A, vol. 108, p. 030101, 9/2023.
  23. R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array”, Physical Review Letters, vol. 116, p. 103602, 3/2016.
  24. E. Shahmoon et al., “Cooperative Resonances in Light Scattering from Two-Dimensional Atomic Arrays”, Physical Review Letters, vol. 118, p. 113601, 3/2017.
  25. J. Rui et al., “A subradiant optical mirror formed by a single structured atomic layer”, Nature, vol. 583, pp. 369–374, 7/2020.
  26. N. Nefedkin, M. Cotrufo, and A. Alù, “Nonreciprocal total cross section of quantum metasurfaces”, Nanophotonics, vol. 0, 1/2023.
  27. R. Alaee et al., “Quantum Metamaterials with Magnetic Response at Optical Frequencies”, Physical Review Letters, vol. 125, p. 063601, 8/2020.
  28. K. E. Ballantine and J. Ruostekoski, “Optical Magnetism and Huygens’ Surfaces in Arrays of Atoms Induced by Cooperative Responses”, Physical Review Letters, vol. 125, p. 143604, 10/2020.
  29. K. E. Ballantine, D. Wilkowski, and J. Ruostekoski, “Optical magnetism and wavefront control by arrays of strontium atoms”, Physical Review Research, vol. 4, p. 033242, 7/2022.
  30. K. E. Ballantine and J. Ruostekoski, “Cooperative optical wavefront engineering with atomic arrays”, Nanophotonics, vol. 10, pp. 1901–1909, 5/2021.
  31. B. X. Wang et al., “Design of metasurface polarizers based on two-dimensional cold atomic arrays”, Optics Express, vol. 25, pp. 18760–18773, 8/2017.
  32. N. S. Baßler et al., “Linear optical elements based on cooperative subwavelength emitter arrays”, Optics Express, vol. 31, pp. 6003–6026, 2/2023.
  33. N. S. Baßler et al., “Metasurface-Based Hybrid Optical Cavities for Chiral Sensing”, Physical Review Letters, vol. 132, p. 043602, 1/2024.
  34. J. Engelberg and U. Levy, “The advantages of metalenses over diffractive lenses”, Nature Communications, vol. 11, 12/2020.
  35. W. T. Chen, A. Y. Zhu, and F. Capasso, “Flat optics with dispersion-engineered metasurfaces”, Nature Reviews Materials, vol. 5, pp. 604–620, 8/2020.
  36. Z. Li et al., “Atomic optical antennas in solids”, Nature Photonics, vol. 18, pp. 1113–1120, 6/2024.
  37. M. Zhou et al., “Optical Metasurface Based on the Resonant Scattering in Electronic Transitions”, ACS Photonics, vol. 4, pp. 1279–1285, 5/2017.
  38. L. Chomaz et al., “Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis”, New Journal of Physics, vol. 14, p. 055001, 5/2012.
  39. J. Javanainen et al., “Shifts of a resonance line in a dense atomic sample”, Physical Review Letters, vol. 112, 3/2014.
  40. J. Javanainen and J. Ruostekoski, “Light propagation beyond the mean-field theory of standard optics”, Optics Express, vol. 24, p. 993, 1/2016.
  41. B. Zhu et al., “Light scattering from dense cold atomic media”, Physical Review A, vol. 94, p. 023612, 8/2016.
  42. N. J. Schilder et al., “Polaritonic modes in a dense cloud of cold atoms”, Physical Review A, vol. 93, p. 063835, 6/2016.
  43. N. J. Schilder et al., “Homogenization of an ensemble of interacting resonant scatterers”, Physical Review A, vol. 96, p. 013825, 7/2017.
  44. N. Schilder et al., “Near-Resonant Light Scattering by a Subwavelength Ensemble of Identical Atoms”, Physical Review Letters, vol. 124, p. 073403, 2/2020.
  45. S. Jennewein et al., “Propagation of light through small clouds of cold interacting atoms”, Physical Review A, vol. 94, no. 5, 2016.
  46. S. Jennewein et al., “Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory”, Physical Review A, vol. 97, 5/2018.
  47. L. Corman et al., “Transmission of near-resonant light through a dense slab of cold atoms”, Physical Review A, vol. 96, p. 53629, 11/2017.
  48. S. D. Jenkins et al., “Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment”, Physical Review A, vol. 94, p. 023842, 8/2016.
  49. H. Dobbertin, R. Löw, and S. Scheel, “Collective dipole-dipole interactions in planar nanocavities”, Physical Review A, vol. 102, p. 031701, 9/2020.
  50. D. Fattal et al., “Flat dielectric grating reflectors with focusing abilities”, Nature Photonics, vol. 4, pp. 466–470, 7/2010.
  51. A. B. Klemm et al., “Experimental high numerical aperture focusing with high contrast gratings”, Optics Letters, vol. 38, p. 3410, 9/2013.
  52. M. Khorasaninejad et al., “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging”, Science, vol. 352, pp. 1190–1194, 6/2016.
  53. Z. Zhou et al., “Efficient Silicon Metasurfaces for Visible Light”, ACS Photonics, vol. 4, pp. 544–551, 3/2017.
  54. H. Liang et al., “Ultrahigh Numerical Aperture Metalens at Visible Wavelengths”, Nano Letters, vol. 18, pp. 4460–4466, 7/2018.
  55. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces”, Science, vol. 339, pp. 12320091–12320096, 3/2013.
  56. N. Yu and F. Capasso, “Flat optics with designer metasurfaces”, Nature Materials, vol. 13, pp. 139–150, 1/2014.
  57. W. T. Chen and F. Capasso, “Will flat optics appear in everyday life anytime soon?”, Applied Physics Letters, vol. 118, p. 100503, 3/2021.
  58. S. Shrestha et al., “Broadband achromatic dielectric metalenses”, Light: Science and Applications, vol. 7, 12/2018.
  59. C. Bradac et al., “Quantum nanophotonics with group IV defects in diamond”, Nature Communications, vol. 10, pp. 1–13, 12/2019.
  60. V. M. Acosta et al., “Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications”, Physical Review B, vol. 80, 9/2009.
  61. C. Hepp et al., “Electronic structure of the silicon vacancy color center in diamond”, Physical Review Letters, vol. 112, p. 036405, 1/2014.
  62. T. Müller et al., “Optical signatures of silicon-vacancy spins in diamond”, Nature Communications, vol. 5, pp. 1–7, 2/2014.
  63. T. Iwasaki et al., “Tin-Vacancy Quantum Emitters in Diamond”, Physical Review Letters, vol. 119, p. 253601, 12/2017.
  64. M. E. Trusheim et al., “Lead-related quantum emitters in diamond”, Physical Review B, vol. 99, p. 075430, 2/2019.
  65. J. M. Smith et al., “Colour centre generation in diamond for quantum technologies”, Nanophotonics, vol. 8, pp. 1889–1906, 11/2019.
  66. K. Ohno et al., “Three-dimensional localization of spins in diamond using 12C implantation”, Applied Physics Letters, vol. 105, p. 52406, 8/2014.
  67. T. Y. Hwang et al., “Sub-10 nm Precision Engineering of Solid-State Defects via Nanoscale Aperture Array Mask”, Nano Letters, vol. 22, pp. 1672–1679, 2/2022.
  68. J. Michl et al., “Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces”, Applied Physics Letters, vol. 104, p. 102407, 3/2014.
  69. M. Lesik et al., “Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample”, Applied Physics Letters, vol. 104, p. 113107, 3/2014.
  70. T. Fukui et al., “Perfect selective alignment of nitrogen-vacancy centers in diamond”, Applied Physics Express, vol. 7, p. 055201, 4/2014.
  71. H. Ozawa et al., “Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111)”, Applied Physics Express, vol. 10, p. 045501, 4/2017.
  72. J. L. Pacheco et al., “Ion implantation for deterministic single atom devices”, Review of Scientific Instruments, vol. 88, 12/2017.
  73. Y.-C. Chen et al., “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield”, Optica, vol. 6, pp. 662–667, 5/2019.
  74. Y. Zhou et al., “Direct writing of single germanium vacancy center arrays in diamond”, New Journal of Physics, vol. 20, p. 125004, 12/2018.
  75. D. Scarabelli et al., “Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond”, Nano Letters, vol. 16, pp. 4982–4990, 8/2016.
  76. C. J. Stephen et al., “Deep Three-Dimensional Solid-State Qubit Arrays with Long-Lived Spin Coherence”, Physical Review Applied, vol. 12, p. 064005, 12/2019.
  77. L. Novotny and N. Van Hulst, “Antennas for light”, Nature Photonics, vol. 5, pp. 83–90, 2/2011.
  78. F. Andreoli et al., “Maximum Refractive Index of an Atomic Medium”, Physical Review X, vol. 11, p. 011026, 2/2021.
  79. L. Novotny and B. Hecht, Principles of nano-optics. Cambridge University Press, 1/2009.
  80. M. Antezza and Y. Castin, “Spectrum of Light in a Quantum Fluctuating Periodic Structure”, Physical Review Letters, vol. 103, p. 123903, 9/2009.
  81. M. Antezza and Y. Castin, “Fano-Hopfield model and photonic band gaps for an arbitrary atomic lattice”, Physical Review A, vol. 80, p. 013816, 8/2009.
  82. C.-R. Mann et al., “Selective Radiance in Super-Wavelength Atomic Arrays”, arXiv:2402.06439, 2/2024.
  83. R. Ben-Maimon et al., “Quantum interfaces with multilayered superwavelength atomic arrays”, arXiv:2402.06839, 2/2024.
  84. S. P. Pedersen, L. Zhang, and T. Pohl, “Quantum nonlinear metasurfaces from dual arrays of ultracold atoms”, Physical Review Research, vol. 5, p. L012047, 1/2023.
  85. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. John Wiley & Sons, Inc., 10/1991.
  86. H. Zheng and H. U. Baranger, “Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions”, Physical Review Letters, vol. 110, p. 113601, 3/2013.
  87. H. van de Stadt and J. M. Muller, “Multimirror Fabry–Perot interferometers”, JOSA A, vol. 2, p. 1363, 8/1985.
  88. I. H. Deutsch et al., “Photonic band gaps in optical lattices”, Physical Review A, vol. 52, pp. 1394–1410, 8/1995.
  89. R. Menon and B. Sensale-Rodriguez, “Inconsistencies of metalens performance and comparison with conventional diffractive optics”, Nature Photonics, vol. 17, pp. 923–924, 10/2023.
  90. J. Bezanson et al., “Julia: A fresh approach to numerical computing”, SIAM review, vol. 59, no. 1, pp. 65–98, 2017.
  91. R. E. Evans et al., “Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation”, Physical Review Applied, vol. 5, p. 044010, 4/2016.
  92. T. Schröder et al., “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures”, Nature Communications, vol. 8, pp. 1–7, 5/2017.
  93. M. Pan et al., “Dielectric metalens for miniaturized imaging systems: progress and challenges”, Light: Science & Applications, vol. 11, pp. 1–32, 6/2022.
  94. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: From fundamentals to applications”, Nanophotonics, vol. 7, pp. 1169–1190, 6/2018.
  95. I. Volkov et al., “Non-radiative configurations of a few quantum emitters ensembles: Evolutionary optimization approach”, Applied Physics Letters, vol. 124, 2/2024.
  96. M. S. Bin-Alam et al., “Ultra-high-Q resonances in plasmonic metasurfaces”, Nature Communications, vol. 12, pp. 1–8, 2/2021.
  97. K. Shastri and F. Monticone, “Nonlocal flat optics”, Nature Photonics, vol. 17, pp. 36–47, 12/2022.
  98. C. Chen et al., “Spectral tomographic imaging with aplanatic metalens”, Light: Science & Applications, vol. 8, pp. 1–8, 11/2019.
  99. A. Arbabi et al., “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays”, Nature Communications, vol. 6, pp. 1–6, 5/2015.
  100. A. McClung et al., “Snapshot spectral imaging with parallel metasystems”, Science Advances, vol. 6, pp. 7646–7664, 9/2020.
  101. J. van de Groep et al., “Exciton resonance tuning of an atomically thin lens”, Nature Photonics, vol. 14, pp. 426–430, 4/2020.
  102. K. Ou et al., “Mid-infrared polarization-controlled broadband achromatic metadevice”, Science Advances, vol. 6, pp. 711–722, 9/2020.
  103. S. Gao et al., “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light”, Advanced Optical Materials, vol. 7, p. 1900883, 11/2019.
  104. J. Ma et al., “Engineering Quantum Light Sources with Flat Optics”, Advanced Materials, p. 2313589, 2024.
  105. A. S. Solntsev, G. S. Agarwal, and Y. Y. Kivshar, “Metasurfaces for quantum photonics”, Nature Photonics, vol. 15, pp. 327–336, 4/2021.
  106. J.-Z. Yang et al., “Quantum metasurface holography”, Photonics Research, vol. 10, pp. 2607–2613, 11/2022.
  107. Q. Y. Wu et al., “Quantum process tomography on holographic metasurfaces”, npj Quantum Information, vol. 8, pp. 1–6, 4/2022.
  108. L. J. Rogers et al., “Electronic structure of the negatively charged silicon-vacancy center in diamond”, Physical Review B, vol. 89, p. 235101, 6/2014.
  109. K. D. Jahnke et al., “Electron-phonon processes of the silicon-vacancy centre in diamond”, New Journal of Physics, vol. 17, p. 043011, 4/2015.
  110. D. D. Sukachev et al., “Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout”, Physical Review Letters, vol. 119, p. 223602, 11/2017.
  111. A. Sipahigil et al., “Indistinguishable photons from separated silicon-vacancy centers in diamond”, Physical Review Letters, vol. 113, p. 113602, 9/2014.
  112. L. J. Rogers et al., “Multiple intrinsically identical single-photon emitters in the solid state”, Nature Communications, vol. 5, 8/2014.
  113. P. Wang et al., “Transform-Limited Photon Emission from a Lead-Vacancy Center in Diamond above 10 K”, Physical Review Letters, vol. 132, p. 073601, 2/2024.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.