Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Scalable computation of input-normal/output-diagonal balanced realization for control-affine polynomial systems (2410.22435v1)

Published 29 Oct 2024 in math.OC

Abstract: We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube