Papers
Topics
Authors
Recent
Search
2000 character limit reached

$\mathsf{OPA}$: One-shot Private Aggregation with Single Client Interaction and its Applications to Federated Learning

Published 29 Oct 2024 in cs.CR, cs.AI, and cs.LG | (2410.22303v1)

Abstract: Our work aims to minimize interaction in secure computation due to the high cost and challenges associated with communication rounds, particularly in scenarios with many clients. In this work, we revisit the problem of secure aggregation in the single-server setting where a single evaluation server can securely aggregate client-held individual inputs. Our key contribution is the introduction of One-shot Private Aggregation ($\mathsf{OPA}$) where clients speak only once (or even choose not to speak) per aggregation evaluation. Since each client communicates only once per aggregation, this simplifies managing dropouts and dynamic participation, contrasting with multi-round protocols and aligning with plaintext secure aggregation, where clients interact only once. We construct $\mathsf{OPA}$ based on LWR, LWE, class groups, DCR and demonstrate applications to privacy-preserving Federated Learning (FL) where clients \emph{speak once}. This is a sharp departure from prior multi-round FL protocols whose study was initiated by Bonawitz et al. (CCS, 2017). Moreover, unlike the YOSO (You Only Speak Once) model for general secure computation, $\mathsf{OPA}$ eliminates complex committee selection protocols to achieve adaptive security. Beyond asymptotic improvements, $\mathsf{OPA}$ is practical, outperforming state-of-the-art solutions. We benchmark logistic regression classifiers for two datasets, while also building an MLP classifier to train on MNIST, CIFAR-10, and CIFAR-100 datasets. We build two flavors of $\caps$ (1) from (threshold) key homomorphic PRF and (2) from seed homomorphic PRG and secret sharing.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.