Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Raman Polarization Switching in CrSBr (2410.22164v1)

Published 29 Oct 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: Semiconducting CrSBr is a layered A-type antiferromagnet, with individual layers antiferromagnetically coupled along the stacking direction. Due to its unique orthorhombic crystal structure, CrSBr exhibits highly anisotropic mechanical and optoelectronic properties acting itself as a quasi-1D material. CrSBr demonstrates complex coupling phenomena involving phonons, excitons, magnons, and polaritons. Here we show through polarization-resolved resonant Raman scattering the intricate interaction between the vibrational and electronic properties of CrSBr. For samples spanning from few-layer to bulk thickness, we observe that the polarization of the A$_g2$ Raman mode can be rotated by 90 degrees, shifting from alignment with the crystallographic a (intermediate magnetic) axis to the b (easy magnetic) axis, depending on the excitation energy. In contrast, the A$_g1$ and A$_g3$ modes consistently remain polarized along the b axis, regardless of the laser energy used. We access real and imaginary parts of the Raman tensor in our analysis, uncovering resonant electron-phonon coupling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der waals semiconductor crsbr. Advanced Materials 32, 2003240 (2020).
  2. Huang, B. et al. Electrical control of 2d magnetism in bilayer cri 3. Nature nanotechnology 13, 544–548 (2018).
  3. Magnetic 2d materials and heterostructures. Nature nanotechnology 14, 408–419 (2019).
  4. Dyakonov, M. I. Basics of semiconductor and spin physics. Spin physics in semiconductors 1–37 (2017).
  5. Ziebel, M. E. et al. Crsbr: an air-stable, two-dimensional magnetic semiconductor. Nano Letters 24, 4319–4329 (2024).
  6. Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (feps3) crystals. 2D Materials 3, 031009 (2016).
  7. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals. Nature 546, 265–269 (2017).
  8. Magneto-elastic coupling in a potential ferromagnetic 2d atomic crystal. 2D Materials 3, 025035 (2016).
  9. Huang, B. et al. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
  10. On the origin of magnetic anisotropy in two dimensional cri3. 2D Materials 4, 035002 (2017).
  11. Dirnberger, F. et al. Magneto-optics in a van der waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).
  12. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2d magnetic semiconductor. Nature Materials 20, 1657–1662 (2021).
  13. Klein, J. et al. The bulk van der waals layered magnet crsbr is a quasi-1d material. ACS nano 17, 5316–5328 (2023).
  14. Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der waals magnet. Nature Communications 14, 8261 (2023).
  15. Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer crsbr. Nature Communications 15, 4735 (2024).
  16. Torres, K. et al. Probing defects and spin-phonon coupling in crsbr via resonant raman scattering. Advanced Functional Materials 33, 2211366 (2023).
  17. Anisotropic electron-hole excitation and large linear dichroism in the two-dimensional ferromagnet crsbr with in-plane magnetization. Phys. Rev. Res. 5, 033143 (2023).
  18. Bianchi, M. et al. Paramagnetic electronic structure of crsbr: Comparison between ab initio gw theory and angle-resolved photoemission spectroscopy. Physical Review B 107, 235107 (2023).
  19. Bianchi, M. et al. Charge transfer induced lifshitz transition and magnetic symmetry breaking in ultrathin crsbr crystals. Phys. Rev. B 108, 195410 (2023).
  20. Watson, M. D. et al. Giant exchange splitting in the electronic structure of a-type 2d antiferromagnet crsbr. npj 2D Materials and Applications 8, 54 (2024).
  21. Smolenski, S. et al. Large exciton binding energy in the bulk van der waals magnet crsbr. arXiv preprint arXiv:2403.13897 (2024).
  22. Komar, R. et al. Colossal magneto-excitonic effects in 2d van der waals magnetic semiconductor crsbr. arXiv preprint arXiv:2409.00187 (2024).
  23. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der waals magnet. Nature Nanotechnology 17, 256–261 (2022).
  24. Lin, K. et al. Probing the band splitting near the gamma point in the van der waals magnetic semiconductor crsbr. The Journal of Physical Chemistry Letters 15, 6010–6016 (2024).
  25. Meineke, C. et al. Ultrafast exciton dynamics in the atomically thin van der waals magnet crsbr. Nano Letters 24, 4101–4107 (2024).
  26. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006).
  27. Zhang, X. et al. Phonon and raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews 44, 2757–2785 (2015).
  28. Polarized raman spectroscopy in low-symmetry 2d materials: angle-resolved experiments and complex number tensor elements. Physical Chemistry Chemical Physics 23, 27103–27123 (2021).
  29. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS nano 9, 10612–10620 (2015).
  30. Guide to optical spectroscopy of layered semiconductors. Nature Reviews Physics 3, 39–54 (2021).
  31. Pawbake, A. et al. Raman scattering signatures of strong spin-phonon coupling in the bulk magnetic van der waals material crsbr. Physical Review B 107, 075421 (2023).
  32. Zhang, T. et al. Magnetism and optical anisotropy in van der waals antiferromagnetic insulator crocl. ACS nano 13, 11353–11362 (2019).
  33. Ling, X. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano letters 16, 2260–2267 (2016).
  34. Mao, N. et al. Birefringence-directed raman selection rules in 2d black phosphorus crystals. Small 12, 2627–2633 (2016).
  35. Ribeiro, H. B. et al. Unusual angular dependence of the raman response in black phosphorus. ACS nano 9, 4270–4276 (2015).
  36. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angewandte Chemie International Edition 54, 2366–2369 (2015).
  37. Mao, N. et al. Direct observation of symmetry-dependent electron–phonon coupling in black phosphorus. Journal of the American Chemical Society 141, 18994–19001 (2019).
  38. McCreary, A. et al. Intricate resonant raman response in anisotropic res2. Nano letters 17, 5897–5907 (2017).
  39. Raman spectra of monolayer, few-layer, and bulk rese2: an anisotropic layered semiconductor. ACS nano 8, 11154–11164 (2014).
  40. Huang, S. et al. In-plane optical anisotropy of layered gallium telluride. ACS nano 10, 8964–8972 (2016).
  41. Luo, W. et al. Excitation-dependent anisotropic raman response of atomically thin pentagonal pdse2. ACS Physical Chemistry Au 2, 482–489 (2022).
  42. Miller, B. et al. Tuning the fröhlich exciton-phonon scattering in monolayer mos2. Nature communications 10, 807 (2019).
  43. Zhang, X. et al. Raman spectroscopy of shear and layer breathing modes in multilayer mos2. Phys. Rev. B 87, 115413 (2013).
  44. Kim, J. et al. Anomalous polarization dependence of raman scattering and crystallographic orientation of black phosphorus. Nanoscale 7, 18708–18715 (2015).
  45. Lin, K. et al. Strong exciton–phonon coupling as a fingerprint of magnetic ordering in van der waals layered crsbr. ACS nano 18, 2898–2905 (2024).
  46. Fundamentals of semiconductors: physics and materials properties (Springer Science & Business Media, 2010).
  47. Splendiani, A. et al. Emerging photoluminescence in monolayer mos2. Nano letters 10, 1271–1275 (2010).
  48. Two dimensional semiconductors: Optical and electronic properties. In Reference Module in Materials Science and Materials Engineering (Elsevier, 2024).
  49. Klein, J. et al. Control of structure and spin texture in the van der waals layered magnet crsbr. Nature Communications 13, 5420 (2022).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.