Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Choosy Babies Need One Coach: Inducing Mode-Seeking Behavior in BabyLlama with Reverse KL Divergence (2410.22081v1)

Published 29 Oct 2024 in cs.CL

Abstract: This study presents our submission to the Strict-Small Track of the 2nd BabyLM Challenge. We use a teacher-student distillation setup with the BabyLLaMa model (Timiryasov and Tastet, 2023) as a backbone. To make the student's learning process more focused, we replace the objective function with a reverse Kullback-Leibler divergence, known to cause mode-seeking (rather than mode-averaging) behaviour in computational learners. We further experiment with having a single teacher (instead of an ensemble of two teachers) and implement additional optimization strategies to improve the distillation process. Our experiments show that under reverse KL divergence, a single-teacher model often outperforms or matches multiple-teacher models across most tasks. Additionally, incorporating advanced optimization techniques further enhances model performance, demonstrating the effectiveness and robustness of our proposed approach. These findings support our idea that "choosy babies need one coach".

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.