Papers
Topics
Authors
Recent
2000 character limit reached

Metastability-Induced Solid-State Quantum Batteries for Powering Microwave Quantum Electronics (2410.21900v1)

Published 29 Oct 2024 in quant-ph

Abstract: Metastability is ubiquitous in diverse complex systems. In open quantum systems, metastability offers protection against dissipation and decoherence, yet its application in quantum batteries remains unexplored. We propose a solid-state open quantum battery where metastable states enable stable superextensive charging without complicated protocols and energy storage with extended lifetime. Using a realistic organic maser platform, we show the controllable manner of the work extraction from the quantum battery, which can be exploited for on-demand coherent microwave emission at room temperature. These results not only demonstrate the usefulness of metastability for developing the quantum batteries robust against energy losses, but also provide a paradigm of the practical quantum device powered up by quantum batteries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der waals-maxwell theory, J. Stat. Phys. 3, 211 (1971).
  2. A. Bovier and F. Den Hollander, Metastability: a potential-theoretic approach (Springer, Cham, 2016).
  3. D. S. Fisher and D. A. Huse, Equilibrium behavior of the spin-glass ordered phase, Phys. Rev. B 38, 386 (1988).
  4. C. M. Newman and D. L. Stein, Ordering and broken symmetry in short-ranged spin glasses, J. Phys.: Condens.Matter 15, R1319 (2003).
  5. E. Van Nimwegen and J. P. Crutchfield, Metastable evolutionary dynamics: crossing fitness barriers or escaping via neutral paths?, Bull. Math. Biol. 62, 799 (2000).
  6. J. S. Kelso, Multistability and metastability: understanding dynamic coordination in the brain, Philos. Trans. R. Soc., B 367, 906 (2012).
  7. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, USA, 2002).
  8. C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer, Berlin, 2004).
  9. R. S. Souto, A. Martín-Rodero, and A. L. Yeyati, Quench dynamics in superconducting nanojunctions: Metastability and dynamical yang-lee zeros, Phys. Rev. B 96, 165444 (2017).
  10. Y.-D. Jin, C.-D. Qiu, and W.-L. Ma, Theory of metastability in discrete-time open quantum dynamics, Phys. Rev. A 109, 042204 (2024).
  11. J. Q. Quach, G. Cerullo, and T. Virgili, Quantum batteries: The future of energy storage?, Joule 7, 2195 (2023).
  12. L. P. García-Pintos, A. Hamma, and A. del Campo, Fluctuations in extractable work bound the charging power of quantum batteries, Phys. Rev. Lett. 125, 040601 (2020).
  13. R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87, 042123 (2013).
  14. S. Imai, O. Gühne, and S. Nimmrichter, Work fluctuations and entanglement in quantum batteries, Phys. Rev. A 107, 022215 (2023).
  15. J.-Y. Gyhm, D. Šafránek, and D. Rosa, Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128, 140501 (2022).
  16. K. Sen and U. Sen, Local passivity and entanglement in shared quantum batteries, Phys. Rev. A 104, L030402 (2021).
  17. D. Rossini, G. M. Andolina, and M. Polini, Many-body localized quantum batteries, Phys. Rev. B 100, 115142 (2019).
  18. H. Freedhoff and J. V. Kranendonk, Theory of coherent resonant absorption and emission at infrared and optical frequencies, Can. J. Phys. 45, 1833 (1967).
  19. J. Q. Quach and W. J. Munro, Using dark states to charge and stabilize open quantum batteries, Phys. Rev. Appl. 14, 024092 (2020).
  20. D. S. McClure, Triplet-singlet transitions in organic molecules. lifetime measurements of the triplet state, J. Chem. Phys. 17, 905 (1949).
  21. M. Oxborrow, J. D. Breeze, and N. M. Alford, Room-temperature solid-state maser, Nature 488, 353 (2012).
  22. M. De Groot, I. Hesselmann, and J. Van der Waals, Phosphorescence and spin polarization: A preliminary report, Molecular Physics 12, 259 (1967).
  23. K. Takeda, K. Takegoshi, and T. Terao, Zero-field electron spin resonance and theoretical studies of light penetration into single crystal and polycrystalline material doped with molecules photoexcitable to the triplet state via intersystem crossing, J. Chem. Phys. 117, 4940 (2002).
  24. S.-l. Ma, J.-k. Xie, and F.-l. Li, Generation of superposition coherent states of microwave fields via dissipation of a superconducting qubit with broken inversion symmetry, Phys. Rev. A 99, 022302 (2019).
  25. K. Debnath, Y. Zhang, and K. Mølmer, Lasing in the superradiant crossover regime, Phys. Rev. A 98, 063837 (2018).
  26. Y. Zhang, C. Shan, and K. Mølmer, Ultranarrow superradiant lasing by dark atom-photon dressed states, Phys. Rev. Letters 126, 123602 (2021).
  27. P. R. Rice and H. J. Carmichael, Photon statistics of a cavity-qed laser: A comment on the laser–phase-transition analogy, Phys. Rev. A 50, 4318 (1994).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.