Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Longitudinal Analysis of Racial and Gender Bias in New York Times and Fox News Images and Articles (2410.21898v2)

Published 29 Oct 2024 in cs.CY, cs.CL, and cs.CV

Abstract: The manner in which different racial and gender groups are portrayed in news coverage plays a large role in shaping public opinion. As such, understanding how such groups are portrayed in news media is of notable societal value, and has thus been a significant endeavour in both the computer and social sciences. Yet, the literature still lacks a longitudinal study examining both the frequency of appearance of different racial and gender groups in online news articles, as well as the context in which such groups are discussed. To fill this gap, we propose two machine learning classifiers to detect the race and age of a given subject. Next, we compile a dataset of 123,337 images and 441,321 online news articles from New York Times (NYT) and Fox News (Fox), and examine representation through two computational approaches. Firstly, we examine the frequency and prominence of appearance of racial and gender groups in images embedded in news articles, revealing that racial and gender minorities are largely under-represented, and when they do appear, they are featured less prominently compared to majority groups. Furthermore, we find that NYT largely features more images of racial minority groups compared to Fox. Secondly, we examine both the frequency and context with which racial minority groups are presented in article text. This reveals the narrow scope in which certain racial groups are covered and the frequency with which different groups are presented as victims and/or perpetrators in a given conflict. Taken together, our analysis contributes to the literature by providing two novel open-source classifiers to detect race and age from images, and shedding light on the racial and gender biases in news articles from venues on opposite ends of the American political spectrum.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube