Papers
Topics
Authors
Recent
2000 character limit reached

Antichiral and trap-skin dynamics in a nonreciprocal bosonic two-leg ladder with artificial magnetic flux (2410.21701v1)

Published 29 Oct 2024 in cond-mat.quant-gas and quant-ph

Abstract: Non-Hermiticity and synthetic gauge fields play two fundamental roles in engineering exotic phases and dynamics in artificial quantum systems. Here we explore the mean-field dynamics of interacting bosons in a two-leg ladder with synthetic magnetic flux and nonreciprocal hopping under the open boundary condition. In the Hermitian limit, we showcase the breakdown of the flux-driven chiral dynamics due to the nonlinear self-trapping effect. We further find that the nonreciprocity can drive the transition between chiral dynamics and antichiral dynamics. The antichiral motion is manifested as the non-Hermitian skin dynamics along the same direction on two legs that are not suppressed by the magnetic flux, while the chiral-antichiral transition is flux-tunable. We also reveal the trap-skin dynamics with the coexistence of the self-tapping and skin dynamics in the ladder. Dynamical phase diagrams with respect to the chiral-antichiral dynamics, skin dynamics, self-trapping dynamics, and trap-skin dynamics are presented. Our results shed light on intriguing dynamical phenomena under the interplay among non-Hermiticity, nonlinearity, and artificial gauge fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996).
  2. N. Hatano and D. R. Nelson, Phys. Rev. B 56, 8651 (1997).
  3. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
  4. Z. G. Yuto Ashida and M. Ueda, Advances in Physics 69, 249 (2020).
  5. S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
  6. L. Jin and Z. Song, Phys. Rev. B 99, 081103 (2019).
  7. Y. Yi and Z. Yang, Phys. Rev. Lett. 125, 186802 (2020).
  8. S. Longhi, Phys. Rev. B 105, 245143 (2022a).
  9. S. Longhi, Phys. Rev. Lett. 128, 157601 (2022b).
  10. M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, Advances in Physics: X 7, 2109431 (2022).
  11. M. Ezawa, Phys. Rev. B 105, 125421 (2022).
  12. S.-Z. Li and Z. Li,  (2024), arXiv:2404.12266 [cond-mat.dis-nn] .
  13. G. Khanikaev, Alexander B. Shvets, Nature photonics 11, 763 (2017).
  14. D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014).
  15. A. Polkovnikov, Annals of Physics 325, 1790 (2010).
  16. E. Colomés and M. Franz, Phys. Rev. Lett. 120, 086603 (2018).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.