Nonsingular black holes as dark matter (2410.21577v2)
Abstract: It is commonly assumed that low-mass primordial black holes cannot constitute a significant fraction of the dark matter in our universe due to their predicted short lifetimes from the conventional Hawking radiation and evaporation process. Assuming physical black holes are nonsingular--likely due to quantum gravity or other high-energy physics--we demonstrate that a large class of nonsingular black holes have finite evaporation temperatures. This can lead to slowly evaporating low-mass black holes or to remnant mass states that circumvent traditional evaporation constraints. As a proof of concept, we explore the limiting curvature hypothesis and the evaporation process of a nonsingular black hole solution in two-dimensional dilaton gravity. We identify generic features of the radiation profile and compare them with known regular black holes, such as the Bardeen solution in four dimensions. Remnant masses are proportional to the fundamental length scale, and we argue that slowly evaporating low-mass nonsingular black holes, or remnants, are viable dark matter candidates.
- F. Zwicky, Helv. Phys. Acta 6, 110 (1933).
- T. M. C. Abbott et al. (DES), Phys. Rev. D 107, 083504 (2023), arXiv:2207.05766 [astro-ph.CO] .
- A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
- B. J. Carr and A. M. Green, (2024), arXiv:2406.05736 [astro-ph.CO] .
- S. W. Hawking, Nature 248, 30 (1974).
- B. J. Kavanagh, “bradkav/pbhbounds: Release version,” (2019).
- J. Polchinski, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (2017) pp. 353–397, arXiv:1609.04036 [hep-th] .
- J. H. MacGibbon, Nature 329, 308 (1987).
- J. D. Barrow, Phys. Rev. D 46, R3227 (1992).
- P. Chen and R. J. Adler, Nucl. Phys. B Proc. Suppl. 124, 103 (2003), arXiv:gr-qc/0205106 .
- B. Carr and F. Kuhnel, SciPost Phys. Lect. Notes 48, 1 (2022), arXiv:2110.02821 [astro-ph.CO] .
- S. Profumo, (2024), arXiv:2405.00546 [astro-ph.HE] .
- D. A. Easson, Class. Quant. Grav. 35, 235005 (2018), arXiv:1712.09455 [hep-th] .
- M. Markov, JETP Lett. 36, 265 (1982).
- D. A. Easson, JCAP 02, 004 (2007), arXiv:astro-ph/0608034 .
- S. Christensen and S. Fulling, Phys. Rev. D 15, 2088 (1977).
- B. Drehmer et al., Phys. Rev. D 79, 064019 (2009).
- D. A. Easson, JHEP 02, 037 (2003), arXiv:hep-th/0210016 .
- S. Rajendran, SciPost Phys. Lect. Notes 56, 1 (2022), arXiv:2204.03085 [hep-ph] .
- J. M. Bardeen, “Proceedings of the international conference gr5,” (1968).
- S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006), arXiv:gr-qc/0506126 .
- Z.-Y. Fan and X. Wang, Phys. Rev. D 94, 124027 (2016), arXiv:1610.02636 [gr-qc] .
- I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).
- A. M. Green, Nucl. Phys. B 1003, 116494 (2024), arXiv:2402.15211 [astro-ph.CO] .
- B. J. Carr, Astrophys. J. 201, 1 (1975).
- J. H. MacGibbon and B. J. Carr, Astrophys. J. 371, 447 (1991).
- R. Laha, Phys. Rev. Lett. 123, 251101 (2019), arXiv:1906.09994 [astro-ph.HE] .
- M. Boudaud and M. Cirelli, Phys. Rev. Lett. 122, 041104 (2019), arXiv:1807.03075 [astro-ph.HE] .
- D. A. Easson and R. H. Brandenberger, JHEP 06, 024 (2001), arXiv:hep-th/0103019 .
- S. W. Hawking and R. Penrose, Proc. Roy. Soc. Lond. A 314, 529 (1970).
- O. Zaslavskii, Physics Letters B 688, 278 (2010).
- H. Maeda, JHEP 11, 108 (2022), arXiv:2107.04791 [gr-qc] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.