Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Stein Gradient Descent Approach for Doubly Intractable Distributions (2410.21021v1)

Published 28 Oct 2024 in stat.ML, math.ST, and stat.TH

Abstract: Bayesian inference for doubly intractable distributions is challenging because they include intractable terms, which are functions of parameters of interest. Although several alternatives have been developed for such models, they are computationally intensive due to repeated auxiliary variable simulations. We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions. Through an efficient gradient approximation, our MC-SVGD approach rapidly transforms an arbitrary reference distribution to approximate the posterior distribution of interest, without necessitating any predefined variational distribution class for the posterior. Such a transport map is obtained by minimizing Kullback-Leibler divergence between the transformed and posterior distributions in a reproducing kernel Hilbert space (RKHS). We also investigate the convergence rate of the proposed method. We illustrate the application of the method to challenging examples, including a Potts model, an exponential random graph model, and a Conway--Maxwell--Poisson regression model. The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 17 likes.