Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization (2410.20573v2)

Published 27 Oct 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.