Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
130 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
36 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Inevitable Trade-off between Watermark Strength and Speculative Sampling Efficiency for Language Models (2410.20418v1)

Published 27 Oct 2024 in cs.CR and cs.AI

Abstract: LLMs are probabilistic models, and the process of generating content is essentially sampling from the output distribution of the LLM. Existing watermarking techniques inject watermarks into the generated content without altering the output quality. On the other hand, existing acceleration techniques, specifically speculative sampling, leverage a draft model to speed up the sampling process while preserving the output distribution. However, there is no known method to simultaneously accelerate the sampling process and inject watermarks into the generated content. In this paper, we investigate this direction and find that the integration of watermarking and acceleration is non-trivial. We prove a no-go theorem, which states that it is impossible to simultaneously maintain the highest watermark strength and the highest sampling efficiency. Furthermore, we propose two methods that maintain either the sampling efficiency or the watermark strength, but not both. Our work provides a rigorous theoretical foundation for understanding the inherent trade-off between watermark strength and sampling efficiency in accelerating the generation of watermarked tokens for LLMs. We also conduct numerical experiments to validate our theoretical findings and demonstrate the effectiveness of the proposed methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)