Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

EACO-RAG: Towards Distributed Tiered LLM Deployment using Edge-Assisted and Collaborative RAG with Adaptive Knowledge Update (2410.20299v2)

Published 27 Oct 2024 in cs.DC

Abstract: LLMs have demonstrated impressive capabilities in language tasks, but they require high computing power and rely on static knowledge. To overcome these limitations, Retrieval-Augmented Generation (RAG) incorporates up-to-date external information into LLMs without extensive fine-tuning. Meanwhile, small LLMs (SLMs) deployed on edge devices offer efficiency and low latency but often struggle with complex reasoning tasks. Unfortunately, current RAG approaches are predominantly based on centralized databases and have not been adapted to address the distinct constraints associated with deploying SLMs in edge environments. To bridge this gap, we propose Edge-Assisted and Collaborative RAG (EACO-RAG), a lightweight framework that leverages distributed edge nodes for adaptive knowledge updates and retrieval. EACO-RAG also employs a hierarchical collaborative gating mechanism to dynamically select among local, edge-assisted, and cloud-based strategies, with a carefully designed algorithm based on Safe Online Bayesian Optimization to maximize the potential performance enhancements. Experimental results demonstrate that EACO-RAG matches the accuracy of cloud-based knowledge graph RAG systems while reducing total costs by up to 84.6% under relaxed delay constraints and by 65.3% under stricter delay requirements. This work represents our initial effort toward achieving a distributed and scalable tiered LLM deployments, with EACO-RAG serving as a promising first step in unlocking the full potential of hybrid edge-cloud intelligence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.