Papers
Topics
Authors
Recent
2000 character limit reached

The product structure of MPS-under-permutations (2410.19541v1)

Published 25 Oct 2024 in quant-ph, cond-mat.str-el, math-ph, and math.MP

Abstract: Tensor network methods have proved to be highly effective in addressing a wide variety of physical scenarios, including those lacking an intrinsic one-dimensional geometry. In such contexts, it is possible for the problem to exhibit a weak form of permutational symmetry, in the sense that entanglement behaves similarly across any arbitrary bipartition. In this paper, we show that translationally-invariant (TI) matrix product states (MPS) with this property are trivial, meaning that they are either product states or superpositions of a few of them. The results also apply to non-TI generic MPS, as well as further relevant examples of MPS including the W state and the Dicke states in an approximate sense. Our findings motivate the usage of ans\"atze simpler than tensor networks in systems whose structure is invariant under permutations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.